
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB031358

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
only; Test and Evaluation; 26 MAY 1977. Other
requests shall be referred to Ballistic Missile
Defense Advanced technology Center, ATTN: ATC-
P, PO Box 1500, Huntsville, AL 35807.

BMDATC notice dtd 6 Mar 1981

N

•

/
/

-

•- 7

00

CO

CO
o
Q
<3"

r LU

cr

HIGHES SOFTWARE, INC.

806 Massachusetts Avenue

Cambridge, Ma. 02139

TECHNICAL REPORT # 19

AXIOMATIC ANALYSIS

FINAL REPORT FOR

PERIOD AUGUST 1977 - SEPTEMBER 1978

SEPTEMBER 1978
\

Prepared for *—^ r ~"^

Ballistic Missile Defense Advanced Technology Center

27

NOTICES

Copyright © 1978 by

HIGHER ORDER SOFTWARE, INC

All rights reserved

No part of this report may be reproduced in any
form, except by the U.S. Government, without
written permission from Higher Order Software,
Inc. Reproduction and sale by the National
Technical Information Service is specifically
permitted.

DISCLAIMERS

The findings in this report are not to be
construed as an official Department of
the Army position, unless so designated
by other authorized documents.

The citation of trade names and names
of manufacturers in this report is not to
be construed as official Government
endorsement or approval of commercial
produces or services referenced herein.

DISPOSITION

Destroy this report when it is no longer
needed. Do not return it to the originator

i

UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE WNW Oat» Intend,

REPORT DOCUMENTATION PAGE
1. RETORT NUMB

TR-19
». GOVT ACCESSION NO.

REAO INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMMR

f
4. TITLE isodSobl.fi»)

Axiomatic Analysis - Final Report for Period
August 1977 - September 1978

S. TYPE OF REFORT & PERIOD COVERED

Final Report
Aug. 1977 - Sept. 1978

S. PERFORMING GRQ. REPORT NUMBER

?. AUTHORS

Higher Order Software, Inc.

I. CONTRACT OR GRANT NUMBER«

DASG60-77-C-015S
< <..-

t. PERFORMING ORGANIZATION NAME ANO ADDRESS

Higher Order Software, Inc. ,
806 Massachusetts Avenue /
Cambridge, MA 02139

10. PROGRAM ELEMENT. PROJECT. TASK
AREA V WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME ANO ADDRESS

Higher Order Software, Inc.
Cambridge, MA 02139

12. REPORT DATE

September 1978
13. NUMMR OF PAGES

243
14. MONITORING AGENCY NAME & ADDRESS Id different from Controlling Office,

Ballistic Missile Defense Advanced
Technology Center

Huntsvilie, AL

«. SECURITY CUSS, lot tniinportt

UNCLASSIFIED

IE«. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT lot thit Report!

Distribution limited to U.S. Government Agencies only, Test and Evaluation,
26 May 1977. Other requests for this documant must be referred to
Ballistic Missile Defense Advanced Technology Center, Attn: ATC-P,
P.O. Box 1500, Huntsviile, AL 35807.

17. DISTRIBUTION STATEMENT tot the sbanet entered in «toe* 70, it different from Report!

18. SUPPLEMENTARY NOTES

19. KE Y WORDS IContlr.u* on rnvurm side if necessary »nd identify by block number)

Requirements, systems, system theory, system specification, HOS methodology,
resource allocation, axioms, data types, functions, control structures, semantics!,
level, layer, natural language, category theory, arrows, commutative diagrams,
duality, fuzzy sets, fuzzy logic, approximate reasoning, uncertainty, probability

M. ABSTRACT IContinui on revert» tide H necemery »nd identify by block number)

*The basic concepts of the HOS systems theory and design methodology are developec .
Notions like structure, data type, variable, value, function, tree, node, data
structure, primitive operations, and universal primitive operations are elabor-
ated and a distinction is drawn between a theory as a discovery procedure and
as a set of constraints. Functions, algebras, and control maps are discussed
in connection wit* data type specification, and the potential use of HOS in
artificial intelligence and cognitive modelling is explored, including the,^
l

art X V DO f0RM 1473 W 1 JAN 73 *
EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIKn
SECURITY CLA&Jl*|C*Tf N qPm\% PAGE mm Dot», Efttmd)

.S

SECURITY CLASSIFICATION OF THIS FACE flfttwA 0*0 £nt*ndf

19. theory, notational frameworks, R~Nets, perspicuity, expressive power,
comparison.

20.^possible use of HOS as a model for lexical semantics. Some mathematical
results relating the HOS primitive control structures to mathematical
category theory are derived and the relevance of the theory of fuzzy sets
and fuzzy logic to the BMD environment is examined. Four notational
frameworks for specifying BMD-related systems and requirements are compared
and evaluated along the dimensions of expressive power and perspicuity. ,

)

SECURITY CLASSIFICATION OF THIS PAGE W*n 0*0 E»w*ll

HIGHER ORDER SOFTWARE, INC.
806 Massachusetts Avenue

Cambridge, Ma. 02139

McGw-n'ht-j&iz; o

TECHNICAL REPORT # 19

7 ^^xl ^IQWTIC DIALYSIS/ J

FINAL REPORT FOR

PERIOD AUGUST 1977 - SEPTEMBER 1978

Prepared for

Ballistic Missile Defense Advanced Technology Center

Ht Oil v

TABLE OF CONTENTS

PART PAGE

1 Introduction 1

2 Some Preliminaries on System Specification 5
M. Hamilton and S. Zeldin

3. Foundations of Axiomatic Analysis 25
S. Cushing

4. Algebraic Specification of Data Types in 45
Higher Order Software (HOS)

S. Cushing

5. Software Engineering, Artifical Intelligence 59
and Cognitive Processes

S. Cushing

6. Lexical Functions and Lexical Decomposition: 71
An Algebraic Approach to Lexical Meaning

S. Cushing

7. A Note on Arrows and Control Structures: 109
Category Theory and HOS

S. Cushing

8. How to Do a Data Type 133
S. Cushing

9. Fuzzy Sets and Approximate Reasoning 166
L. Vaina

10. Fuzzy Logics: A Survey 177
H. M. Prade

11. Four Models for the Description of Systems 196
S. Cushing

PART 1

Introduction

1

I

I

INTRODUCTION

This is the final report of work done on BRD Contract DASG60-77-C-3049.

The report is divided into eleven parts. The first five parts, after this

introduction, deal respectively with preliminary concepts of system specifi-

cation; foundations of axiomatic analysis; the relation between data types,

functions, and control structures; software engineering and artificial in-

telligence; and the semantic structure of language. These five parts have

appeared earlier as the first interim report. The next four parts deal re-

spectively with the HOS methodology (Parts 7 and 8) and with fuzzy sets and

fuzzy logic (Parts 9 and 10) and appeared earlier as the second interim re-

port. The last two parts are new, appearing here for the first time. Part 11

compares four system specification methodologies and Part 12 applies some of

these ideas to a real BHD problem.

Part 2 develops the basic concepts of HOS as a systems design methodology.

The notions of structure, data type, variable, value, function, tree, node,

data structure, primitive operations, and universal primitive operations

are reviewed and formally characterized. The distinction between an object,

its name, its mode of existence, its environment, when it happens, where

it comes from, its representation, its implementation, and its execution is

discussed and explicated. The notions of a system layer and a level of re-

finement are contrasted. Specific attention is paid co the characterization

of a complete system specification and the problem of resource allocation

in a system.

Part 3 develops the basic concepts of HOS as a systems theory. Two notions

of axiom are discussed, one derived from empirical science and one from

mathematics, and shown to play different roles within the HOS theory.

The notions of a theory as a discovery procedure and as a set of constraints

are compared and contrasted and the distinction is used to clarity the

character of HOS.

Part 4 develops the basic concepts of HOS from the point of view of data-

type specification, which in HOS is done algebraically. The notions of

function, algebra, and control map. are developed in connection with their

use in specifying systems and found to provide a natural mathematical

characterization of the system concept. Some advantages of the HOS theory

over other proposals for algebraic data-type specification that have appeared

in the literature are discussed.

Part 5 explores the potential usefulness of HOS in the study and modelling

of cognitive systems. Some conceptual and methodological problems in

current work in artifical intelligence are pointed out and a way of re-

medying them by using HOS is suggested.

Part 6 represents a first step in implementing the program of research

suggested and outlined in Part 5. A recent proposal in the linguistic

literature that word meanings might be best represented as functions is

examined in the light of HOS concepts of functional decomposition and found

to lead to a natural algebraic model for the semantic lexicon of a language.

The work reported in this part is of particular significance for BMD systems

for three important reasons. First, many properties of BMD systems are

properties they share» as systems, wfth other systems of seemingly very

different kinds. The distinction between a theory of systems viewed as

a discovery procedure and a theory of systems viewed as a set of constraints,

for example, as discussed in Part 3, is derived from work in linguistics

on syntactic systems. A lot can be learned that is relevant to BMD systems

by analyzing the properties of other systems that are easier to deal with

and that thus reveal their essential properties more readily. Second,

a fully successful BMD system will require maximal automation in both its

recognition and its response capabilities, including the ability to communi-

cate with mechanical components of the system to the greatest extent

possible in natural language. Syntax-based proposals for natural-language

man-machine communication have fallen far short of expectation and need,

and semantics-based methods would seem to provide much greater liklihood

of success. If the semantic system of a language can in fact be described

in exactly the same language and concepts—namely, H0S--as other components

of BMD systems, then the entire BMD program can be greatly simplified and

its efficiency significantly enhanced. Third, the specific example dis-

cussed, taken from the linguistic literature, involves exactly the kind

of problem that it would be necessary to solve in a rigorous formalization

of a BMD system. The example deals with the question of how best to

characterize a number of data types that are particularly in need of for-

mal explication in a BMD system: EVENTS, ENTITIES, ACTIVITIES, LOCATIONS,

and PATHS. An automated BMD response device, for example, would have to

know precisely and unambiguously what constitutes an event requiring a

response and what paths that response might involve. The discussion in

this part can be viewed as a first attempt to develop answers to precisely

these and related questions.

Parts 7 and 8 deal specifically with the HOS systems methodology, with Part 7

focusing on control structures and Part 8 focusing on data types; these two

theoretical entities, along with functions, constitute the three basic units

in terms of which any system can be specified in HOS. Part 7 examines the

three HOS primitive control structures, usually defined in traditional set-

theoretic terms, and asks what happens if the definitions are reformulated

in terms of the newer mathematical theory of categories. This effort is in

line with state-of-the-art thinking in mathematics itself, much of which is

concerned precisely with such category-theoretic reformulations of set-theoretic

notions. A number of revealing insights emerge form the analysis undertaken

here, both in regard to the primitive control structures themselves and in

regard to the very notion of "system." Part 8 focuses on data types from the

user's point of view, outlining how one goes about constructing an algebraic

specification for a data type in an HOS system. Three versions of data-type

TIME that wight be needed in BMD systems are presented and some theoretical

point concerning consistency and completeness are discussed.

Parts 9 and 10 deal with fuzzy sets and fuzzy logic, branches of mathematics

and logic that deal specifically with problems of vagueness and uncertainty»

two pervasive characteristics of BMO-related situations and systems; in parti-

cular, the theory of possibility, based on fuzzy sets and logic, has been

proposed as an alternative to probability theory as a way of dealing coherently

with these two characteristics. Part 9 discussed fuzzy reasoning and its

relevance to communication in systems; such as those that arise in the BMD

environment. Part 10 surveys the various systems of fuzzy logic that have

appeared in the literature and discusses their relative? advantages and draw-

backs.

Part 11 analyzes four notational frameworks for system specification and

evaluates them along the dimensions of expressive power and perspicuity. The

four frameworks include HOS coitrol maps, R-Nets, commutative diagrams,

and a modified version of the R-Net framework. Recommendations are made Tor

the conditions under which the various frameworks might most fruitfully be

used.

}

PART 2

Some Preliminaries on System Specification

by
H. Hamilton and S. Zeldin

5 '

Some Preliminaries on System Specification

Design and Verification take place throughout a system development process

Design means to think. Verify means to think back. For each step of

design there should be a counter-step of verification. At times, the pro-

cess of design is one and the same as the process of verification.

This occurs when certain design characteristics are included for the

purpose of preventing unnecessary verification. In such a case, some

types of verification requirements are designed out of the system.

What is left is the second order verification which determines if unneces-

sary verification requirements with respect to a design have truly been

eliminated, and then a need to verify only that which is truly part of

the original intent of the design.

Many engineers talk about a desire to improve their own design techniques.

These design techniques include those techniques for producing the design

for a solution to a particular problem as well as the design of the

process which will verify that solution. More often than not, these

engineers appear to be talking about a different design process since

they are involved in different types of systems or different phases of

development within a given system. Actually, they are applying the same

process (i.e., design) to a different "application."

From the point of view of a typical development process, design could be •

the process of going from a concept to a set of requirements, a set of

requirements to a set of specifications, a set of specifications to a

set of code or o set of code to a computer. In every one of these

processes each designer considers himself to have the task of preparing

his design to eventually reside in a computer or machine environment.

One of the problems with this approach is that a designer either worries

unnecessarily about design considerations not relevant to his own process

or he might leave out design considerations thinking someone has already

taken care of them or that someone will take care of them later. The

important consideration for each designer is to worry about designs

which lie should worry about and only those designs he should worry about.

Each designer goes through the same process, but each designer should be

applying that process to a different phase of the overall application.

Thus the inputs and outputs of his design process should be both unique

and self-contained.

7 I

Other than a good deal cf insight, a successful designer has necessary

and sufficient knowledge about his problem, an understanding of the nature

of a design process, an understanding of the nature of the reverse of a

design process (the verification process), and a means to effectively

perform a reliable and workable implementation of his design.

It is desirable for a designer to have a methodology to support him in

a design process. However, although a methodology can support a designer,

it can never replace him. A tool can be developed to replace some of

his functions with respect to himself, the designer, and even to replace

all of his functions on a particular project. However, the designer

still has the prerogative to create new designs and to design new uses

for the same tool or new tools for different uses.

There are many methodologies today whose intent is to provide standards

and techniques to assist the engineer in the design and verification

process 11]. The developers of these methodologies are all proponents

of reliable designs. And, most methodologies advocate similar techniques

towards this aim. For example, it is a commonly accepted idea that it

is beneficial to produce a hierarchical breakdown of a given design

in order to prov de more manageable pieces to work with. And, there

are variations between methodologies. Some emphasize a concentration

on data flow as opposed to functional flow [2],[3],[4],[5]; others

emphasize just the opposite [6],[71,[8]; others indicate that both func-

tional and data flow are of equal importance [9]*, others emphasize

documentation standards [101,111]; others emphasize graphical notations

[123; and still others emphasize semantic representation [13].

There are certainly positive aspects in many of these methodologies

and, in particular, in what they are trying to obtain. To b* effective,

however, a methodology should have techniques and rules for the purpose

of defining systems which are consistent and complete. But these tech-

niques and rules are useful only if they are within themselves consistent

and complete, both with respect to each other and to the systems to

which they are being applied. With a complete and consistent methodology,

a system can be defined formally so that all systems which communicate

with a given system can understand that system in the same way.

8 i

In order to define a complete system, a methodology must have the mech-

anisms to define all of the relationships which exist in a system environ-

ment. This includes communication within and between systems and the

vesource allocation which provides for that comnvinication. Thus not only

must all data, data flow, function and functional flow be able to be

explicitly defined, but the relationships (and control of the relationships)

between data and data, between function and function, and between data

and function must be able to be defined within any given system environ-

ment.

A methodology should have a mechanism to provide modularity in the formal

sense. That is, any change should be able to be made locally and 1f a

change is made, the result of that change should be able to be traced

throughout both the system within which that change resides and through-

out other systems communicating with that system.

A methodology should have the mechanisms to communicate and resource

allocate a formally defined system in a manner which is transparent

to the engineer, the user of these mechanisms. That is, even though the

semantics of a system definition are formal, the syntax describing

that system should be as flexible and as close to the "language" of the

engineer as long as it contains the necessary information to be used in

the system description.

We will discuss here some properties of the methodology of Higher Order

Software (HOS) as they relate design and verification to the require-

ments we have set forth for methodologies in general.

A" object is an existence of something. A system is an assemblage of

objects united by some form of regular interaction or interdependence.

The mechanism by which these objects are united can make the difference

between a system which is reliable and one which is not. In HOS the

<#v objects of a system are united by a form of control where that form of
f
* control is determined by adherence to six axioms.

A system, itself, can be viewed as an object within another system.

Objects of an HOS system can be described in terms of abstract control

structures [141 that relate members of algebraically defined data types

[15], [5] or functionally defined data whose components are algebraically

defined. When an object is viewed in terms of an abstract control struc-

ture, that object 1s in the state of doing. When an object Is viewed

as a member of a data type, that object is 1n a state of being.

HOS systems communicate In terms of data and functions. Functions

can be in a being state or a doing state. Data can be in a being state

or a doing state. Or, as Gushing puts it [16]:

...anything that can be...a datum, can also do, by serving as
input to a function, and anything that can do, i.e., a function,
can also be, since functions themselves make up a data type.

System designers often have *.he problem of knowing when they are finished.

For example, it is not clear when a system definition has been decomposed

as far as it should be or if it has been decomposed to a state of unneces-

sary detail. In HOS, a design that is finished is one which has been

hierarchically decomposed Into a complete system specification. In

this case, all terminal nodes of a specification tree represent primitive

operations on data types (Appendix I in [18]).

Sometimes we need to talk about the relationships between one system and

another system. In order to talk about such relationships, it 1s necessary

to understand the structure or organization of a system. In HOS the

structure of a system can be made up of several systems where each system

can be defined in terms of levels, layers, and instances of layers.

A layer represents all performance passes of a system. An instance

of a_ layer represents one performance pass of a system. A level represents

a step of refinement within an instance of a layer of a system. A

communication takes place between two systems if an instance of one system

communicates with an instance of another system. Two systems are on the

same layer if and only if an instance of one system always communicates

with the same instance of the other system. I

There are other relationships between systems other than that of communi-

cation between them as objects. A system, as an object, can communicate

10 I

with other layers of a system such as the definition, description, name,

or environment. That same system, as an object, can also communicate

with those systems on which another system is implemented. All of these

relationships between one system and another system are defined by

still another system. This process (or system) which prepares one system

to relate to another system is called resource allocation.

In the process of resource allocation, it Is possible to assign a name

to an object, an object to a name, or replace an object by an object or

a name by a name. An engineer provides resource allocations to objects

in his system when he is designing the system. This process can take

place manually or automatically. He also designs resource allocation

functions for the system itself to perform when it is being executed.

Sometimes it is necessary to perform a resource allocation to a system

before it can communicate with another system. Sometimes it is necessary

to perform a communication between two systems before a new step of

resource allocation is determined.

Thus, for example, one system may need to compute an output value in

order that such a value can be assigned to an input variable in another

system. Another system may need to compute an output value in order

that such a value can be assigned as a function to a name of a node within

a structure in another system (this type of assignment is necessary for

a reconfiguration of functions in real time). Another system may need

to assign a function from one system as a value to an input variable

inits own system. And still another system may need to assign an instance

of a function as a value to an input variable in its own system.

When we think about an object it is often too easy to think about it in

too limited a sense. The problem is that everyone involved with that

same object has a different viewpoint of that object. And, it is for this

very reason that one designer will define the same object differently

than another designer. Each designer designs a system with his own 1m-

3* plicit assumptions or preconceived notions that are collectively different

from anyone else. Unfortunately, many of these inplicit assumptions

are not usually made known until that object is finally executed on a

computer. And sometimes, they arenever made known. At least a system

11 ;

that is implemented on a computer has the advantage of the computer

finding problems that designers of other non-computer problems would never

find.

The only way to get around the problems of producing incomplete, ambiguous

or redundant designs is to have the ability to define a system explicitly.

In order to explicitly talk about an object, we need to understand what

it is, its t$>e (or characteristics), and its definition. (The definition

of an object contains information about those objects controlled by that

object as a controller. It does not include information about how that

object itself is controlled.) To transfer an ojbect from one system

specification to another, we would include all of the above in addition

to the object, itself, and a description of that object.

The controller of an object allocates its name, how it exists (i.e., being

or doing), its-environment (i.e., its residence), when it happens,

where it comes from, its representation, its implementation (i.e., what

makes it happen), and its execution, which Includes the relationships

of one system, as an object, with another system as an object (i.e.,

its layer and level communication relationships) and the relationships

of one system as an object with another system in order to prepare that

system for communication (i.e., its layer and level resource allocation

relationships).

An object as a controller resource allocates. An object as a function

communicates.

Each object in a system specification has a special meaning to an

engineer as to what it is. For example, objects such as functions, input

and output values, and input and output variables are commonly referred

by system designers. In HOS, we include these kinds of objects with very

specific meanings, and we have other kinds of objects including those

which are available as a convenient means of abstracting (or modularizing) Jw
system specifications. When we talk about an object, it is very helpful

to say what it is, for in doing so we immediately know a lot more about

its properties. For a given specification, an object in HOS could be,

for example, a structure, an operation, a function, a data type, a

12 i-

variable, a value a tree» a data structure, or a primitive operation.

An example of objects that can be used in a system specification is shown

in Figure 1. (A definition for these objects is given in Appendix I and

Appendix II of [18].)

We can tell the type of an object by referring it to a set of values

whose characteristics we have defined. A type is a set of values defined

by a set of axioms. Each axiom is a true statement about control structures

Thus if

y • A(x);

we can say

Where (y,x) are INTEGERS,

A is a constant FUNCTION;

in addition, if

2 « C(b);

we might say

b is an A,

C is a FUNCTION,
2 is a MATRIX;

To understand the meaning of a system, we define each of its objects.

For example, one definition of an instance of E function, E, Is

y - E(x);

Where X is an INTEGER,

y is a NATURAL;

One definition of E as data is

Where E is a FUNCTION;

13

y « A(x)

y - Aj(g) 9 * A2(x)

91- W 92 " W

STRUCTURE:

DATA TYPE:

VARIABLE:

VALUE:

FUNCTION:

TREE:

NODE:

DATA STRUCTURE:

PRIMITIVE
OPERATIONS:

UNIVERSAL Pf.MiriVE
OPERATIONS:

the control relationships of the functions
1n System A

a set of values characterized by a set of
primitive operations

a name of an object
V is an input variable of A
"y" is an output variable of A

object being names
x is a value of data type integer (e.g., 1,2,3,.
y is a value of data type integer

mapping between input values and output values
where those values are represented by particular
variables

A.Aj.Ap.B. and B« are functions of System A

geographical representation of a system (environ-
ment of A)

location on tree. Function A resides at the root
node of the control map for System of A

a set of variables whose values collectively re-
present the same value as a variable. In System A
(x,,x2) is a data structure of x.

one of a set of operations which characterize
a particular data type.

A,,Bj and B« are primitive operations for

System A

operations in which the operands are represented
by variables whose values are of some type

.)

Figure 1

14 '

We use a description to talk about, the definition of a system. One

description of an instance of function E is "y - E(x)H. This description

can be replaced by other descriptions. It could be replaced by ones

described in an assembly language, specification language, or a higher

order language. In HOS we describe definitions with AXES or AXES based

statements (Appendix II in [18]).

We need to have a name for an object in order to mention that object [17].

A name itself can be an object with respect to Its name. To talk about

E, for example, we use the name of E, "E". E can be controlled by men-

tioning the name of E. Thus "E* controls E in that the mentioning of E

makes E happen, and ME" can be controlled by naming *V. Thus ,ME,M controls

"E". To give a name of E is to resource allocate "E" to E. In order to

invoke E we need to have an object, E , which mentions the name of E.

E. "E\ **Vm and E , which invokes E, all reside in some environment.

In order to control E by E„ we must also resource allocate to EÄ a name c c
In order to talk about the controller I, E and its name must also

reside in some environment. In Figure 2, A, A,, and A« are nodes which

locate positions on the control map; F, F. and F« are functions in

System E. In order to obtain F on the control map, we locate F by

F = Object("F"). F, F, and F2 are resource allocated by the very fact

that they have names. F, as a controller, relates to the invocation of

F, and F2 by mentioning their names which is, in essence, also a process

of resource allocating the names "F," and "F«*' to nodes A, and A«.

In the mentioning of "F." and MF2", F as a function is replaced by

functions F, and F2. Similarly, in the case, for example, where we

have an instance of the function F, defined as y * F{x), we are concerned

with "y" and Mx", 1n addition to "FM, as well as where these names reside.

r1 '2

SYSTEM E ENVIRONMENT

\ "2

CONTROL MAP ENVIRONMENT

IICII

tie ii

Figure 2: System E on the Control Map

HC n

When we relate to an object, It s1 Important to know how It exists. In

the definitions above, when E is viewed in terms of a control structure,

E and x and y are viewed as doing. When E is viewed in terms of a type,

E and x and y are viewed as being.

When one system relates to another system, It must know, among other things,

the environment within which that system resides. This includes where

that system is located and when that system exists.

In the case of Function E, we could say that the location of My = E(x)"

in on the line on this page in this collection of papers. For another

Function A, we might say that its description, "y = A(x)M is located at

node 12 on the control map. Or we might say that My = A(x)M is located

at Register 10 on Computer or at Record, on file«. Similarly with the

definition of A, we could say y " A(x) is located at BLOCKJQQ tQ 200 on

Computer. With respect to function , B, and time, t, we could say

y = A(x) at t or y * A(x) after B or y « A(x) in t or y = Z(x) before

t.

An example environment might be defined as follows:

y = A^at t at x

Where t is a TIME,

z is a LOCATION

or if the type information about A, t and z were contained on, for

example, a file, we could simply say

A at t at x*

The representation of an object might vary depending on its environment.

One representation of A, A's controller, their names, names of names,

etc. could exist in a computer. In one computer, a rational number could

be represented as a single-precision number, and on another computer,

it could be represented as a double-precision number. In an HOS system •*»

specification, we often talk about these objects within the environment *

of a control map. In an HOS implementation, the nodes of a control

map can be replaced by locations of a computer, the names of the nodes

by names of instructions or names of locations in the computer. Thus

16

if a specification is described within a control map environment, it

can be transferred to the computer environment as part of the implementation

process.

In order to implement a system (or make that system happen), we define

that system, the environment of that system and the system that will

execute that system. That system which executes another system is called

a machine (Appendix III in [18)).

One of the most difficult problems facing system designers is that of

resource allocating a design to execute on a particular machine. More

subtle problems appear when we attempt to redesign our system to fit

a machine. Once having done so, we can no longer understand our original

design, since the resulting complexity hides the original intent with

camouflages of implementation. We not only cannot trace input and output

throughout our system design, but we are no longer even sure which input

and output is relevant to our original problem. To try to change such a

system with a new system requirement is a presumptuous notion.

Input and output can be traced throughout a given AXES system definition.

Also data flow can be separated with respect to different layers of

implementation. These features allow us to look at system interfaces

which are relevant at the time they are relevant. We often hear the

complaint from system designers about the problem of attempting to design

a system "top-down" and then being forced to add details of implementation

on a lower level of the top-down design when resource allocation is

addressed. This forces an iteration of the design process in order to

incorporate the extra details of implementation back at the top and down

through the top-down design to maintain consistency of the overall design.

(Some designers merely add that extra detail without worrying about it

because they don't know what to do with it, except to say it came from

some other system; but then they lose track of its influence on their

own system and the influence of their own system on other systems.)

In order to resource allocate a given system to a particular machine, it

is necessary to define both the system and the machine in such a way that

a change to one won't affect the other. It is also necessary to define

17 i

the machine in such a v/ay that the users of the same machine only affect

each other when they -ire explicitly deifned to affect each other.

Whenever we want to separate a system from the specification of its

execution, we specify one layer for the system and another layer for the

machine that runs that system. Likewise, that same machine can be looked

upon as a system with respect to the machine which executes It. To

implement System R> for example, a user might want to "run" R on the OS

system. He could express such an implementation as

R on OS;

or he could express a more detailed implementation as

R at A on B on 0S at m on p'

Where A is a RECORD,

B is a FILE,

m is a LOCATION,

P is a ROM;

In AXES these or similar statements can be used as long as the syntax

and the semantics of the syntax are defined using AXES. The process

of implementation continues until we arrive at the layer of a primitive

machine. Consider potential resource allocation steps for a system:

Determine system: (1)
Sis System;

Determine I/O: (2)
Where S on (x.jX^);

Determine algorithms: (3)
{Xj,x2)

Where (x,,Xp) on E;

Determine OS: (4)
x2

s EfXj)

where E on Executive;

Determine E computer: (5)
Estate = Executive(Estate.)

where Executive on computer

Computer: (6)
Cstate * Computer (Cstate,);

n A *

1R

Because each layer is defined as a control hierarchy, each machine that

runs a system is able to use that system description as data and there-

fore has access to information about that system's ordering relationships

as well as that system's data relationships. With respect to the six

different layers for System S shown above, any one of these layers can

be replaced by another implementation layer. If we want to move E to

another operating system, we change Step 4 to name a new OS for E and

replace Steps 5 and 6. If we wish to design a new algorithm for the

same computer, we change Step 3 and replace E with a new algorithm and

then replace Steps 4, 5, and 6. If we want to move to a new computer

and our operating system is independent of its computer (as it ideally

would be), we can change Step 5 to refer to another computer and we then

can replace Step 6.

The execution of a system is a continuous process of resource allocating

system objects for the purpose of communication and processing the

communication between these objects, where that communication determines

the next step of resource allocation. The start of an execution of an

object is like the process of one object mentioning another object by

first calling its name and then operating on the object itself.

By executing a system we realize the implementation of a system. An

engineer can manually execute a system with the aid of a pencil and

paper. One, however, more commonly thinks of computers as executing

a system. In both cases, this expcution process is a dynamic one.

In the dynamic process we execute a system instance by instance. Each

instance is a performance pass of the system.

Sometimes a system is viewed statically. In this case an engineer or

a computer observes the description of a system by eyeballing state-

ments or instructions. Examples of such static views are those per-

formed by a compiler or an interpreter. An OS could view a system in both

its static and dynamic states.

When v/e wish to define a set of systems to communicate with each other,

we define a system whose purpose is to control their communication.

19

In order to define such a system» we have available a set of rules which

will help us determine how to properly connect systems. As an example,

consider two systems which are to be resource allocated to directly

communicate with each other. A primitive control structure exists which

provides the rules for properly defining two such systems, i.e., one of

which is dependent on the other. Since we are in the specification

stage, we will choose to have the system reside on the control map, which

in our case resides on a piece of paper. It could just as well reside on

a graphics device. Here the primitive control structure, composition

(Figure 3a), is used as a model for organizing our functions. That

system which controls their communication is their controller.

0" yn
WHERE fo'fi»f2 ARf- FU8CTir.;s

l,t,0 ARE OF SCfl TYPE

(A) Primitive Control Structure, Composition

WHERE A IS A CUNSTAT.T Ff.iCTIOil

x,y,g ARE INTEAfPS-
\

y « B(g)

(P.) Use of Cori'osition

Ar Fx'3i''.t'l'.' of tiio Resource A";location
of SystenA O/^ur.ica* i.ig on tho v?::e Layer

20

&

We can tell from this control structure that any function can be "plugged

into" fQ, f-, and f« as long as it follows the rules of composition since

, fQ, f, and f« are defined as functions (Appendix II in [18]). A user of the

composition control structure could plug System A into the structure

as follow«;:

Where A on f«, A, on f,, A« on f«>

Or, in Figure 3b, we have another example of the use of the strurturn
in Figure 3a. Here, A, B, and C are values for fQ, f, and f« respectively.

In this use of the composition control structure, A controls B and C

to communicate with each other on the same layer. A, as a controller,

can be thought of as giving control commands where

i C when X

B when g from C.

(Notice that B is viewed as a being and C is viewed as both being and

doing by A.)

Since A is a constant function, it follows also that B and C are constant

functions. Thus B and C are on the same layer of communication since

both always relate to the same instance with respect to A.

The control relationship of A, B, and C are defined by composition, which

Is defined ar» an AXFS based STRUCTURE, join (Appendix II in [18]). Other control

structures exist for the purpose of providing a controlled communication

between systems. These Include the other primitives, set partition

(decision making) and class partition (parallel processing or independent

functions). From a combination of primitives, we can form more abstract

control structures (e.g., recursive functions). The rules for the control

relationships of the primitive control structures are described in Appendix I

of [18]. Similar rules exist for every defined AXES control structure.

f% The syntax that is associated with such STRUCTURES is used manually by

a designer to define system specifications. The computer can automatically

do the same thing with a STRUCTURE by writing the equivalent commands

21

-At.

into a register instand of on piece of paper. One way of specifying
such a command is through the AXES on statement. These structures

provide the mechanism for systems on different layers to communicate
with each other in that the structure provides a means for an instance
of one system to communicate with an instance of another system by
simply adhering to the relationships of the structure in real time.

We use such a concept for the communication between functions in an
asynchronous environment. For example, a control structure which can be
used to define an interrupt is

STRUCTURE: (YI^) S XchfXwXg)»

Where y^y^jX^Xp are of some type,-

2 2
y, - idgfx^Xg) Coinclude yg = IrfjCXjtXg);

SYNTAX: (jfj^) = XchfXj.Xg);

END Xch;

2 2 Here the universal operations, id2 and id,, themselves defined in AXES
to select a value from a set of values, as well as the coinciude, which
is one of the structures defined so that we can access the same value
more than once, 1s used to define Xch.*

*We named this structure after the XCH instruction in the Apollo Guidance
Computer (AGC), which was used to perform an Interrupt. f t

22

REFERENCES

[1] Ramamoorthy, C.V. and So, H.H. "Appendix A to Requirements
Engineering Research Recommendations," Software Requirements
and Specifications: Status and Perspectives, August 1977.

[2] Jackson, M.A. Principles of Program Design. Academic Press, N.Y.,
1975.

[3] Bridge, R.F. and Thompson, E.W. "A Module Interface Specification
Language," Information Systems Research Laboratory, University
of Texas at Austin, Technical Report No. 163, Dec. 1974.

[4] Guttag, J.» et al. "The Design of Data Structure Specifications,"
Proc. 2nd International Conference on Software Engineering, Oct. 1976,

[5] Robinson, L. and Holt, R.C. "Formal Specifications for Solutions
to Synchronization Problems," Computer Science Group, Stanford
Research Institute, 1975.

[6] Computer Sciences Corporation, "A User Guide to the Threads
Management System," Nov. 1973.

[7] Alford, M.W. "R-Nets: A Graph Model for Real-Time Software
Requirements," Proc. MRI Symposium on Computer Software Engineering,
April 1976.

[8] Davis, CG. and Vick, C.R. "The Software Development System,"
Proc. 2nd International Conference on Software Engineering, Oct. 1976,

[9] Hughes Aircraft Company. "1975 IR&D Structured Design Methodology,
Vol. II: Structured Design," FR 76-17-289, 1975.

[10) Teichroew, D. and Hershey, E.A. III. "PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems," IEEE Trans, on Software Engineering, Vol SE-3,
No. 1, Jan. 1977.

[11] IBM. "HIPO: Design Aid and Documentation Tool," IBM, SR20-
9413-0, 1973.

[12] Ross, D. "Structured Analysis (SA): A Language for Communicating
Ideas," IEEE Transactions on Software Engineering, Vol. SE-3,
No. 1, Jan. 1977.

[13] Wilson, M.L. "The Information Automat Approach to Design and
Implementation of Computer-Based Systems," IBM, Report IBM-FSD,
June 1975.

[14] Hamilton, M. and Zeldin, S. "Higher Order Software—A Methodology
for Defining Software," IEEE Trans, on Software Engineering,
Vol. SE-2, No. 1, March 1976.

23

[15] Hamilton, M. and Zeldin, S. "AXES Syntax Description," Technical
Report No. 4. Higher Order Software, Inc., Cambridge, MA, Dec. 1976

[16] Cushing, S. "The Software Security Problem and How to S-lve It,"
Technical Report No. 6, Revision 1. Higher Order Software, Inc.,
Cambridge, MA, July 1977.

[17] Searle, J.R. "Review of J.M. Sadock, Toward a Linguistic Theory
of Speech Acts," Language 52, 1976.

[13] Hamilton, M. and Zeldin, S. "Verification of an Axiomatic Re-
quirements Specification" presented at the AIAA Computers in
Aerospace Conference, Los Angeles, CA, Oct. 1977.

24

PART 3

Foundations of Axiomatic Analysis

by
S. Cushing

25

Foundations of Axiomatic Analysis

1,0 AXIOMS AND ALGEBRAS IN GENERAL

One of the most powerful and useful tools available to science is the

general process of abstraction. From a large collection of diverse facts»

i.e., true descriptions of data and phenomena that have been derived

from experience and reasoning, the scientist tries to extract a set of

unifying generalizations from which all of those facts can be logically

deduced. The ancient Babylonians were quite familiar with what we call

the Pythagorean theorem, for example, and similar principles that they

derived from surveying and other forms of empirical measurement fBeh74},

and it was only much later, under the influence of philosophers like

Plato, that Greek mathematicians, such as Euclid, managed to show that

all of those principles could be logically derived from a tiny sub-

set, which they called "postulates" or "axioms." Similarly, Newton

distilled all of the empirical physical facts and observations that

had been collected by his predecessors and contemporaries and showed

that all of those facts could be derived as "theorems," and thus made

intelligible from three basic principles, which he called "laws of motion."

For almost three hundred years, Newton's "laws" served as the axioms of

physics, just as Euclid's principles had been serving for a much longer

time as the axioms of geometry.

During the past century, a more formalized notion of axiom has been

developed by mathematicians, leading to the emergence of abstract branches

of mathematics like group theory, linear algebra, and topology, which

although they may ultimately have their origins in empirical science,

have no direct or obvious connection to the real world. A group, vector

space, or topology is any set of objects that satisfy the relevant

set of axioms. Some groups may consist of numbers, others of functions,

and still others of rotations in the plane, but they are all groups

because they all satisfy the relevant axioms. The axioms specify the

basic structure of the sets as_ groups, while any other fact about them

that is relevant to their being groups can be derived from the axioms

as theorems.

Formally, this leads us to the notion of an (abstract) algebra [Beh.741,

[Bir701, [Gut75], (Uam76al. An ajjebrfi is an ordered pair [£,»], where

27

E is a non-empty class of non-empty sets, and w is a non-empty class of

operations on the grandmembers (i.e., members of members) of E. The

members of E are called categories of the algebra, and the members of

i U are called the primitive operations of the algebra. A particular

algebra can be specified by giving a category specification, an operation

specification, and an axiom specification. A category specification lists

o. defines the members of 5". An operation specification gives the domains

and ranges of the members of w as Cartesian products of the members of E.

^n axiom specification is a non-empty set of formal statements that

characterize the interactive behavior of the members of u> and the grand-

members of E. Algebras can be classified according to the constraints

that we choose to put on one or more of their category, operation, or

axiom specifications. An algebra [Eru) is said to be homogeneous, if E

contains exactly one non-empty member, while an algebra which is not

* homogeneous is said to be heterogeneous. Probably the most familiar

kind of homogeneous algebra is the group and the most familiar heterogeneous

algebras are the vector spaces.

• Given the formal category, operation, and axiom specification of an al-

gebra, we are free to implement the algebra any way we want, as long as

we guarantee that the implementations of the categories and primitive

operations behave in reality as the axioms say they should. We can then

I go ahead and prove all sorts of things about the algebra as theorems

that we might never have suspected ahead of time. Since we prove these

theorems formally from the axioms, without worrying about how our algebra

might be implemented, the theorems that result apply equally well to

every implementation, regardless of how different these implementations

may be in other respects. By staying strictly within the formalism

we automatically guarantee that we are talking only about those aspects

of a situation that we really want to be talking about, i.e., those

aspects that uc have formalized in our axioms. This prevents bringing

in undesired information about particular implementations that would

inadvertently rule out other implementations that might later turn out

to be desirable.

28

**•

2.0 AXIOMS AND ALGEBRAS IN HOS

Higher Order Software (IIOS) makes use of the ideas in Section 1 in two

distinct, though related, ways, reflecting the two general kinds of

entity that can exist in any computer system (Lin76], {Wal75], [Cus77).

HOS recognizes that there arc essentially two modes of existence in the

world, that of being and that of doing,, and that everything generally

manifests both modes at once. A given thing can either be or do and,

in general, will both be and do at the same time. This dichotomy re-

flects the related bifurcation between being and becoming. If there

is something that is doing, then there is something (perhaps the same

thing) that is being done to, and this latter thing is therefore becoming.

Again, in general, anything that is doing is also being »done to and so

is itself becoming, as well as being.

This enables us to understand the important relationship between constancy

and change. If we remove the front element from a queue, for example,

we still have the same queue, with one element removed, but we also have

a different queue, i.e., the one that differs from the original one in

exactly that element. The queue can still be the same queue, even though

it has become a different queue, and we are free to choose whichever

of these aspects of the situation fits our needs for any particular problem.

We can also say the queue has changed its state, stipulating that the

queue itself has not changed, but then it is the states that are being or

becoming, so the same dichotomy emerges again on a higher level of ab-

straction.

HOS expresses the distinction between being and doing in terms of the

familiar notions of data and function (or operation), and it does this

in a completely formal way. Anything that can be can be represented as

a member of a data type, and anything that can do can be represented as

a funct i on. As wc would expect from a correct formulation, anything

that can be, i.c , a datum, can also do, by serving as input to a function,

and iiiiything that can do, i.e., a function, can also b£, since functions

themselves make up a data type.

29

I

s

For example, if a datum x is mapped by functions f., f., f , f., f.

onto data y^y?^»*^**» respectively, then x itself can be viewed

as a function that maps the data f., f-, f-, f , I" onto y., y~, y-,

y., yr. Functions themselves can he data, in other words, and data can

be functions, depending on the requirements of the particular problem

we are working on. If FXY is the subset of data type FUNCTION whose

members map data type X into data type Y, then X is the subset of

FUNCTION that maps FXY into Y. Both interpretations are correct» in

general, and which one we choose depends on what we need for a specific

problem.

Again in accordance with the fundamental dichotomy, although data and

functions are distinct components of systems, they are at the same time

inseparable from each other, because each is characterized formally in

terms of the other. A function consists of an input data type, called

its domain, an output data type, called its range, and a correspondence,

called its mapping, between the members of its domain and those of its

range; a function can be characterized, therefore, as an ordered triple

(Domain, Range, Mapping), where the components are as we have just

stated. A data type consists of a set of objects, called its members,

and a set of functions, called its primitive operations, which are specified

by giving their domains and ranges, at least one of which for each primi-

tive operation must include the data type's own set of members, and a

description of the way their mappings interact with one another and,

perhaps, with those of other functions; a data type can thus also be

characterized as an ordered triple, this time (Set, DR, Axioms), where

Set is the set of its members, DR is a statement of the domains and

ranges of its primitive operations, and Axioms is a description of the

interactive behavior of the mappings of the primitive operations. A

data type is thus characterized as an algebra, as we defined this notion

in Section 1.0.

An example of an tlOS data-type specification, nunoly, type STACK, is

given in Figure I, written in the H03 specification language, AXES.

The category spec if tent ion is given by the WHF.RF. statements, which tell

30

ae=

DATA TYPE: STACK;

PRIMITIVE OPERATIONS:

stack. = Push(stack2, integer.);

stack. « Pop(stack2);

integer, » Top(stack.);

»

AXIOMS:

WHERE Newstack IS A CONSTANT STACK;

WHERE S IS A STACK;

WHERE i IS AN INTEGER;

Top(Newstack) = REJECT;

Top(Push(s#i)) = i;

Pop(Newstack) = REJECT;

Pop(Push(s,i)) = s;

END STACK;

Figure 1

HOS/AXES Data Type Stack

31

us that T. contains two members, the sot of stacks and the set of integers.

The operation specification of the algebra is given under, the heading

"PRIMITIVE OPHRATIONS" and says that u consists of three members:

Push, which maps stacks and integers onto stacks; Pop, which maps stacks

onto stacks; and Top, which maps stacks onto integers. The axiom specifi-

cation of the algebra appears after the WHERE statements and contains

four axioms stating the behavior required of a set of objects in order

for them to qualify as a set of stacks: the Ncwstack has no top; the

top of the stack that results from pushing an integer onto a stack is that

integer; the Ncwstack cannot he popped; popping the stack that results

fron pushing an integer onto a stack is that original stack. The existence

of a stack with the specific properties attributed to Newstack in the

first and third axioms is specified in the first WHERE statement.

REJECT is assumed to be a member of every data type. It is invisible to

universal quantification and it is produced as output by a function when

no genuine output is produced. This specification is completely self-

contained, saying exactly what we intend to mean by the word "stack,"

and it is entirely implementation-free. Any set of objects can qualify

as stacks, as long as the primitive operations we want to perform on

them satisfy the axioms of the algebra.

An HOS data-type specification characterizes instances of the two funda-

mental modes of existence in terms of each other. A kind of data (being)

and a kind of function (doing) are specified as behaving towards each

other as indicated by the axioms of an algebra. Given such an algebra,

however, we might want to specify new functions that also operate on that

kind of data. Furthermore, we might want to give the data of that type

a data structure in terms of data of a different data type. Both of these

aims are achieved in HOS by the specification of decomposition trees,

also «.•»lied control maps, which must themselves satisfy a certain set of

axioms in order to be well-formed. These trees can also be viewed from

the opposite direction, as decomposing \ore complicated functions into

less complicated functions, and finally into the primitive operations

of data types. Given a system that involves certain data types, the

32

function the system pcrfoms can bo decomposed into a tree structure whose

nodes arc functions and whose terminal nodes, in particular, are primitive

operations of the data types, where tho collective effort of the functions

at the terminal nodes is the same as that of the system as a whole. Such

tree structures arc not intended to provide definitions of kinds of

objects, which arc provided by the data-type specification (algebras),

but represent system decompositions into subsystems. An example of such

a decomposition tree, for the function y * —-r, is shown in Figure 2.

The domain and range of the decomposed function can be determined by the

typed variables that represent inputs and outputs and by the primitive

operations that appear at the terminal nodes. The tree itself is pre-

cisely what gives the mapping of the decomposed function, by showing

how that mapping gets accomplished in terms of the collective behavior

of the independently characterized prinitive operations.

The key to the usefulness of these decomposition trees lies in the six

IIOS axioms, listed in Figure 3. It is these axioms, in fact, and their

consequences, of course, that make IIOS HOS. While IIOS can specify any

» system that can be specified, the specification must be in accordance

with these axioms or the system may be incomplete or unreliable. Any

software system, in particular, that is specified in accordance with

f these axioms is automatically guaranteed to be reliable» in the sense

| that no data or timing conflicts can ever occur (Ham76b], and secure,

in the sense that information flows only upward [Cus77]. Formally,

the axioms tell us that a well-formet! HOS tree is always equivalent to

a tree in which every node is occupied by one of the three primitive

control structures, shown in Figure 4. Abstract control structures,

defined in terms of the primitives may also appear in well-formed trees,

and, conversely, any control structure, i.e., configuration of parent

and offspring nodes, can appear in a well-formed tree as long as it can

itself be decomposed into the primitives.

Such an IIOS tree can be interpreted cither as decomposing a function

j I into primitive opera I ions <»r ;is hit!! ding up a function out of primitive

operations. Which inteipn t it ion we choose for a particular tree depends,

33

f

y » Oiv(trt2)

y * f(a,b,c,d)

(t|.t2) - f^a.b.c.d)

tt •» Sufr.(a.b) t2 - Dlfference(c.d)

Figura_2
a+b

IICS Tre • for Function y = ~%

34

DEFINITION:

AXIOM 1:

20. provid*s for th* ability to perform a function,

A given module controls the invocation of the set of
functions on its immediate, and only its immediate
lower lcvol.

DEFINITION: Kesponstb»Itty provides for the ability of a module to
produce correct output values.

AXIOM 2: A given module- controls the responsibility for elements
of its own and only its own output space.

DEFINITION: An output access right provides for the ability to locate a
variable, ond once it is located, the ability to give a value to
the locate! variable

AXIOM 3: A given module controls the output access rights to each
set of variables whose values define the elements of the
output space for each immediate, and only each immediate
lower-level function.

DEFINITION: An Input access right provides for the ability to locate
«i variable, and once it is located, the ability to reference the
value of that variable.

> i

AXIOM 4: A given module controls tho input access rights to each
set of variables whose values define the elements of the
input space for each immediate, and only each immediate
lower-level function.

DEFINITION: Rejection provides for the ability to recognize an improper
input element in that, if a given input element is not acceptable,
null output is produced.

AXIOM 5; A given module controls the rejection of invalid elements
of its own, and only its own, input set.

f

DEFINITION: Ordering provides for the ability to establish a relation
in a set of functionb *•<•> that any two functicn elements ara com-
parable in Mt one of the r.aid cl.wsnts precedes the other said
clament,

AXIOM u: A Riven mod iic controls tho ordering of each tree for
its immediate, and only its immediate, lower level.

Figure 3

The Axioms of »OS

35

y - f(x)

COMPOSITION

y - f0(x)

SET PARTITION

(vpy2) « f(xrx?)

y - ft«
xi>

X
y2 * f?'V

CLASS PARTITION

Finjure 4

The Throe Primitive Control StructureJ of HOS

M.

as usual, on the ise wo want to make of it. Under either interpretation of

such a tree, however, what we end up with is a specification of the function

at its root node that is gejiui"oJ[y non-procedural, i.e., non-algorithmic,

and entirely free of implementation considerations. The tree provides

a complete and explicit account of what functional fflaprä»}'. the function

performs and how that mapping is collectively carried out on the types

involved '»y their primitive operations. Everything is clearly spelled

out in terms of the hierarchical organization of functional mappings, and

this—no more, no less — is exactly what we require of an adequate specifi-

cation methodology; this, in turn, is what HOS is intended to provide.

To clarify this latter point somewhat, suppose we have a register whose

positions are filled with integers. Obviously, there is a big difference

between an Implemented register and the integers it contains, and thus

between changing the state of the register and taking one of those integers

as a value. Prom the point of view of specification, however, a register

is every bit as much of an abstraction as an integer. The two abstractions

differ, moreover, only in the interactive behavior of the primitive opera-

tions that are uscJ to characterize their data types, as this behavior

is specified in the axioms of the respective type. From the point of view

of specification, therefore, changing the state of an implemented register

amounts simply to producing a new abstract register as a value. If we

take a register and remove its last element, for example, we get a new

register that is identical to the original register except that it lacks

the original register's last element. This may not be what happens in

implementation, but it is the logic of the situation, and that is what

specification is really all about. Note, by the way, that this is just

another way of looking at what we said about queues in the second para-

graph of this section.

There is a subtle but Important difference between ehe two uses of axioms

in I »OS, which wo can illustrate most clearly, perhaps, by moans of analogy.

Data-type axioms arc used within the IMS theory and are similar to

mathematical axioms, su :h as those of group theory, for example. Given

the general theory of IMS, we can choose arbitrarily, for whatever reason

37

we want, to specify any kind of object at all as an algebra and then

determine the relevant axioms to include in our specification. The algebra

that we construct represents (perhaps infinitely) many possible imple-

mentations, just as the group axioms represent (infinitely) many imple-

mentations of the group notion. If we let HG" be a variable that takes

groups as values and "g" a variable that takes members of G as values,

then to say "s is a STACK" corresponds to the statement "g is a member

of G,M whereas "S is an implementation of STACK" corresponds to "G is

a group." Mathematicians do not usually talk in terms of individual

groups being il?Jllcjnej^atjons of the general notion (algebra) GROUP,

but this is what they really mean and we make it explicit in HOS. For-

mally, we say that a STACK exists on r my possible 1ayers, each of which

is an implementation of data-type STACK, as discussed in (Ham76c, 771.

In contrast to the situation of data-type axioms, the six HOS axioms

(Figure 3), arc not freely chosen for particular uses within the HOS

theory, but constitute part of the deYin_itio£ of that theory. The HOS

axioms are analogous not to strictly mathematical axioms like those of

group theory, but more to the laws of motion of Newtonian physics, whose

axiom itic character we discussed in Section 1.0.Newton's laws are not

sufficient by themselves to characterize the basic properties of the

physical universe (as known in his time), but presuppose and complement

a formalization of what we would mean by "a universe" in the first place.

The notion "a universe" can be characterized {Rya75] in terms of

mathematical notions like differentiablc manifold, vector field, and others,

each of which involves axioms of its own. Once we get this notion

straight, then we can add various other constraints as further axioms

to characterize different kinds of un'rerse--the Newtonian universe,

the T'instcinian universe, the Brans-I>icke universe, etc.--and it be-

come« an empirical question which of these different theories of the

universe really correspond; tu the actuaj universe. The Newtonian

universe was sufficient to account for all known facts up until the end

of th.- last century, when the need for a new model, and thus a different

set of sujnplernentary axioms (constraint*} beyond the strictly mathe-

matical ones became apparent.

38

<

A completely formalized account of IIOS, similarly, would have to include

strictly mathematical axioms, such as those that arc standardly used

to characterize notions like tree, function, and so on, just as a com-

pletely formalized account of Newtonian physics requires axioms for things

like differentiablv manifolds. These axioms would provide what we might

want to call "a systems theory," analogous to the formal notion "a uni-

verse. " Khit we have called the six IIOS axioms then serve as additional

constraints that narrow down this notion to the HOS systems theory, just as

Newton*s three "laws" narrow down the notion "a universe" specifically

to the Newtonian one. Since systems theory is a form of engineering,

however, rather than an empirical science, the criterion for accept-

ability is not empirical accuracy, as it is for physics, but goals like

reliability and security, which are automatically guaranteed by the six

axioms.

Another difference also follows from this latter fact. In physics, the

facts generally tend to undcrdetcrmine the theory, in the sense that

there is more than one model of the universe that fits the known em-

pirical facts of the actual universe at any given time. It is there-

fore useful to examine alternative universes and to study the differences

in their formulation and empirical predictions, in order, for example,

to devise new experiments for deciding among them. In systems theory, however,

the situation is different. Since the criterion for acceptability is

reliability, security, and related notions, there is little sense in

studying systems theories that do not guarantee reliability and security,

when there is already a clear and explicit theory that does.

In practice, furthermore, the software engineer or systems designer

does not have to worry about the strictly mathematical axioms, for tree,

for example, any more thai» the aeronautical engineer has to worry ex-

plicitly about differentiahlo manifolds when designing a new airplane.

The general not ions or" tree an! of what i t means to decompose a function

are intuitively clear, so we ran concentrate our attention on the six

specific !I0.i axions in order to make sure that w. decompose the functions

correctty. Our trees will then be well-formed and reliability and

security will be guaranteed.

39

In general, we can summarize the significance of the six HOS axioms in

the following terms. Despite the high level of sophistication of cen-

tcmpoiary systems analysis, the field has suffered from a serious defect.

The system-specification process is itself a system, but, ironically,

it has generally been carried out in an unsystematic fashion.

Much of what systems designers could learn from each other has often been

lost in the shuffle; new systems have conmonly had to be started from

scratch. There has been no way to guarantee the efficiency of a system

ahead of time. There have been problems of interface correctness,

especially in complex systems designed by a large group of individuals,

and subsystems can be included which are superfluous. No general means

of guaranteeing system security has been available. Overspecification

of a software system can detract from its tranr>fcrabiiity from one

machine to another. The failure to separate specification clearly from

implementation thus can unintentionally rule out the most efficient

implementation of a given system.

Let us say that a system specification is functionally adequate, if it

does what its designer wanted it to do, that is, if it does carry out the

function it was supposed to. As far a« we can tell, it seems that most

systems in use today are functionally adequate, in this sense, at least

to the extent that they have been tested and used. Otherwise, they

would not be in use at all. let us also say that a system specification

*s ft*MX. adequate, if it does what it is supposed to do in the most

effective and efficient possible way. A fully adequate system would thus

be both reliable and secure, for example. As noted in the last para-

graph, though apparently functionally adequate, nost software systems

in use today most likely are not fully adequate. For all the reasons

noted and others, although the jobs software systems are intended to

do get done, they get done with a lost of waste, of time, money, and man-

powe r.

The purpose of uW Hoping u standardised system-specification methodology

is to eliminate this waste, titvon some generally applicable principles

governing the specification of system«, wo can reduce the problem of

40

*

!

guaranteeing full adequacy to that of guaranteeing functional adequacy.

With the correct set of principles on possible (allowed) system specifi-

cations, we can guarantee ahead of time that any system defined in accordance

with those principles that docs what it is supposed to do automatically

does so in the most effective and efficient possible way. These principles

then constitute the axioms of our systems theory or specification methodology.

We can get a clearer idea of what a systems methodology is by con-

sidering explicitly what it is not. A priori one might interpret the

term "methodology" (or "theory") in either of two possible ways. The

most ambitious form of methodology one might hope to develop would be

a discovery procedure [Cho57J for system specifications. A discovery

procedure would be a mechanical (algorithmic) procedure or set of pro-

cedures that would automatically produce, from a given set of require-

ments and specifications, a system that would produce those specifications

from those requirements. Ideally, if we could manage to develop such a

discovery procedure, we could eliminate systems analysts and designers

altogether. The discovery procedure woulu automatically produce the

appropriate system for any desired purpose. At our present level of

knowledge, however, and probably in principle, such a notion of method-

ology is unrealizable. The most we can hope for at this time is a theory

of constraints on system specifications. Such a theory severely limits

the kinds of system specifications an analyst can design by insisting

that the design satisfy the constraints specified in the theory as its

axioms. If the system specification is functionally adequate, and if

the designer has adhered strictly to the constraints provided by the

theory, then the theory guarantees that it is fully adequate as

well.

Developing such a theory of constraints places systems analysis on a par

with the already developed natural sciences. When a physicist or chemist

performs an experiment and observes a new phenomenon, for example, he

tries to construct a theory that explains it. There is no discovery

procedure that automatical ';.• produces a theory from the observations.

The human scientist must use his ingenuity to construct the theory, just

as the human systems analyst inest use ingenuity in designing a system.

41

What the scientist does have available» however, is a theory of constraints

on possible theories that limits the options available. Any theory

the scientist proposes must guarantee conservation of mass-energy and of

momentum, for example, and must be consistent with the laws of thermo-

dynamics. These principles serve as axioms which any acceptable scientific

theory must satisfy. What HOS provides for system-; analysis, analogously,

is a set of axioms (principles) which any fully adequate system specifi-

cation must satisfy.

4

42

REFERENCES

Beh74 Behnke, M. ct al. Fundamentals of Mathematics, Vol Is Founda-
tions of Mathematics/The Real Number System and Algebra, translated
by S. II, Gould, The MIT Press, Cambridge, MA, 1974.

Bir70 Birkhoff, G. and Lipson, J.D, "Heterogeneous Algebras," Journal
of Combinatorial Theory 8, 1970.

Gut75 Gut tag, .1. "The Specification and Application to Programming
of Abstract Data Types." Univ. of Toronto Technical Report
CSRG-59, Sept, 1975.

Haw76a Hamilton, M. and Zelt!in, S. ''AXES Syntax Description." Technical
Report "4. Higher Order Software, Inc., Cambridge, MA, Dec. 1976.

Mn76 Linden, T. A. "Operating System Structure to Support Security
and Reliable Software." ACM Computing Surveys, VIII, 4.
Dec. 1976, pp. 409-445.

Wal75 Walter, W. C., et al. "Structured Specification of a Security
Kernel." Proceedings, International Conference on Reliable
Software, Los Angeles. April 21-23, 1975.

Cus77 Gushing, S. "The Software Security Problem and How to Solve
It." Technical Report #6. Higher Order Software, Inc.,
Cambridge, MA, July 1977.

Ham76b Hamilton, M. and Zeldin, S. "Higher Order Software—A Method-
ology for Defining Software." IEEE Transactions, Vol. SE-2,
No. 1, March 1976.

Haa76c Hamilton, M. and Zeldin, S. "Integrated Software Development
System/Higher Order Software Conceptual Description." Version 1.
Higher Order Software, Inc., Cambridge, MA, Nov. 1976.

Rya75 Ryan, M.P. and Shepley, L.G. Homogeneous Relativistic Cos-
nolngjes. Princeton University Press, Princeton, NJ, 1975.

Cho57 Chomsky, N. Synt acti c Structures, Mont on, The Hague, 1957.

43

PART 4

Algebraic Specification of Data Types In
Higher Order Software "(HOS)

by
S. Cushing

•I

45

Algebraic Specification of Data Types In

Higher Order Software (HOS)

1. INTRODUCTION; HOS AS A FORMAL SPECIFICA-
TION METHODOLOGY

Higher Order Software(KOS) is a formal methodology

developed by Margaret Hamilton and Saydean Zeldin

[1] for the specification of large computer-based

systems Ina manner entirely independent of their

implementation In particular configurations of

hardware and resident software. Any such system

can be formally specified In HOS In terms of three

theoretical constructs: data types, functions (or
operations), and control structures . Data types

are the kinds of objects a system operates on or

produces; functions are the system components which

operate on or produce members of data types; con-
trol structures are the relationships In accordance

with which functions can be combined or decomposed.

The purpose of this paper Is to develop these no-

tions from the point of view of data-type specifi-

cation, which in HOS Is done algebraically. In

Section 2 we will examine the notion of function

and develop the notions of algebra and control map,

which play key roles In both data-type specifica-

tion and system decomposition . In Section 3 we

will compare the theory developed In Section 2 with

some other proposals for algebraic data-type speci-

fication that have appeared 1n the recent litera-

ture.

2. FUNCTIONS» AIC-E8RAS, AND CONTROL MAPS

A function is a many-one correspondence between two

sets. Members of the first set, called the domain.

are said to be mapped by the function onto members

of the second set, called the range. While a given

range element may be mapped onto by any number of

domain elements, it is crucial to the notion of a

function that every domain element map onto exactly

one range element. If x 1s a member of the domain

of a function f, then the member y of the rangt of

f that x maps onto Is said to be f(x), the value

of f at x, and we write "y • f(x)". The elements

x of the domain are also said to be Inputs of f,

and the elements of the range are said to be cos,,-

sible outputs of x, since some range elements may

not get mapped onto by f for any elements of the

domain. The actual elements f(x} of the range that
do get mapped onto by f for some x in the domain

are said to be outputs of f.

47

In general there Is no problem in specifying the

domain and range of a function. We can simply

state that the domain is some set and that the

range is some set and, as long as these sets are

dearly known to us, we »re done. Specifying the

actual mapping of a function is more problematic,

however, especially in the case of infinite sets

or sets which, though finite, are so large that

they might just as well be infinite. For a small

set, we can simply list a set of ordered pairs that

contain only those values that the function actual-
ly makes correspond to each other. For a function

defined on an Infinite set, however, the corres-

ponding set of ordered pairs would be infinite, so

we could never explicitly specify the complete map-

ping in this way.

In some cases, we can get around this problem by

giving an explicit rule or algorithm that expresses

the mapping In general terms, without having to

state the correspondence specifically for each do-

main element. In general, however, we may not al-

ways be able to specify such »n algorithm directly;
even if we can, furthermore, we may not want to

specify a specific algorithm, because this might

tie us in too tightly to a specific hardware or

resident-software configuration. For such cases

we Introduce the notion of an algebra as a way of

specifying Indirectly what mapping our function Is

supposed to perform.

An algebra 1s a collection of sets and a collec-

tion of functions which map from and Into those

sets. Formally, we say that an algebra Is an or-

dered pair [£>«]• where t 1s a collection of sets
and u 1s a collection of functions whose domains

»re Cartesian products of members of I and whose
ranges are members of t . The members of l are
called the types of the algebra, and the members

of u are called its primitive operations . If I
contains exactly one member, the algebra is said

to be homogeneous, while if Z contains more than
one member, the algebra is said to be heterogen-

eous [?].

If the primitive operations of an algebra arc sim-
ple enough functions, then we can characterize them

just by listing their ordered pairs or by giving an

explicit rule. If they »re more complicated, how-
ever, then we can characterize them implicitly by

giving axioms that describe their interactive be-

havior, without stating how to calculate their val-

ues for specific domain elements. An axiom, in

this context, is a statement that asserts the

equality of the outputs of two distinct combina-

tions of functions and inputs. Given a sufficient-

ly large and well-chosen collection of axioms, wt

can narrow down the class of functions that satisfy

them to exactly those that we are trying to char-

acterize.

Probably the simplest and most familiar class of

algebras are the groups [3]. A non-empty set G Is

said to be a group with respect to a binary opera-

tion (function) Hult, called the group multiplica-

tion defined on G, If (1) G is closed under Kult,

I.e., MultCgi.g«) is In G whenever 9) »9? are Jn 6?
(2) Mult is associative, I.e., the grouping of in-

puts Is irrelevant so that MultCg^KultCg^g^)) has

the same value as Mult(HuU(gj,g2),g3); (3) there

is »n element In G that is neutral with respect to
Hult, I.e., that always gets mapped with some other

input by Mult onto that other Input; and (4) every

element of G has an inverse element, i.e., an ele-

ment which gets mapped with It by Hult onto the

neutral element.

For example, the positive rational numbers form a

group it we take Kult to be Multiplication, but the

positive integers do not, since there are then no in-

verse elements. The non-zero rational numbers form

a group, if we take Mult tu be multiplication and

all the ration»)s form a group If we take Mult to

be addition. The Integers form a group if we take

Mult to be addition, but the integers do not form

a group If we take Mult to be multiplication, be-

cause, again, there are then no inverse elements.

We can specify the groups formally as homogeneous

algebras by giving an algebraic specification.

48

consisting of three parts. First we give a type

specification which tells us that I contains a
single set G which contains a distinguished ele-

ment flout:

I: G, Neut c G

Second, we give an operation specification which

tells us that u contains two elements: Mult, whose

domain is G x G and whose range is G, and Inv,

whose domain and range are each G.

«: Mult:
Inv:

G x G
G - G

Third, we give an axiom specification which states

formally that Mult and the member? of G behave In

the way we said earlier they should:

Axioms: For all g»gj,g2,g3 e G,

1. Mult(grMult(g2.g3)) •

Mult(Mult(grg2),g3)

2. Mult(Neut.g) • g

3. Mult(g.Neut) - g

4. Kult(g,Inv(g)) • Heut

Axiom 1 says that Kult is associative. Axioms 2 and

3 say that the distinguished element Neut is in-

deed a neutral element, and Axiom 4 says that Inv

does, in fact, produce inverse elements with re-

, i spect to that neutral element. The remaining pro-

perty that we gave for groups, i.e., that G Is

closed under Mult, is guaranteed by the operation

specification, because of the definition of "func-

tion", so we do not have to include it in the ax-

loms.

The algebraic specification we have just given is

the specification not of a_ group, but of the groups

as a cld^i. A group consists of a particular set

on which functions with the appropriate behavior

have been defined. Our specification leaves the

set G uncharacterized, however, telling us that any_

set G whatsoever can qualify as a group, as long as

there are operations definable on that set which

satisfy our operation specification and our four

* axioms.

Algebraic specifications are used in HOS to char-

acterize all sorts of objects other than purely

mathematical structures like groups. We can char-

acterize the notion of a stack, for example, a data

type which has been extensively discussed in the

literature (e.g., [4).[S],[6].[7]). i* terms of

three primitive operations and four axioms, as Il-

lustrated in Figure 1.

DATA TYPE: STACK;
PRIMITIVE OPERATIONS:

Stack! - Push(stack^,Integerj);

»tack. - PopUUckj);

integer. » Top(stack);

AX IONS:

WHERE Newstack IS A CONSTANT STACK;
WHERE t IS A STACK;
WHERE I IS AN INTEGER;

Top(Newstack) - REJECT;
Top(Push(*,!)) - I;
Pop(Newstack) - REJECT;
Pop(Push(ft,!)) - ftj

ENO STACK;

Figure 1

Oata Type STACK

The algebraic specification in Figure 1 Is written

in the HOS specification language AXES [8] and

characterizes the notion stack of integers. The
operation specification, which gives the domains

and ranges of the members of u, appears under the

heading "PRIMITIVE OPERATIONS", and the type speci-

fication which gives the members of I, alone; with
any distinguished elements. Is provided by the

WHERE statements. The type specification tells us

that there are two sets In this algebra, the set of

stacks and the set of Integers, so the algebra is

heterogeneous, and that there is a distinguished

stack called Newstack. The set of integers 1s as-

sumed to have been characterized independently In

terms of its own algebraic specification [g].

The operation specification tells us that there are

three primitive operations in this algebra, Push,

Pop, and Top. Intuitively, Push is the operation

that places an element on a stack, Pop is the op-

eration that removes an element from the top of a

49

Stack and discards it, and Top is the operation

that tells us what the top element of a stack is,

without removing it from the stack. These intui-

tive characterizations »re specified formally in

the axioms.

The axiom specification appears Immediately after
the WHERE statements. The second and fourth axioms
characterize a stack as a last-in/first-out storage
device. The second axiom says that pushing an in-
teger onto a stack produces a stack whose top ele-
ment is that integer. The fourth axiom says that
popping a stack onto which an integer has been
pushed produces the stack it was pushed onto. The
first and third axioms characterize the distin-
guished element Newstack as the stack that contains
no elements, since It has no top element and can-
not be popped. REJECT Is »t\ ideal element, like
/T and the empty set [3]; it Is assumed to be a
member of every type, but to be Invisible to uni-
versal quantification . An operation is said to
nave an output of REJECT when it has no genuine
output of the expected sort.

Another example, that of time, is shown in Figure
2. This specification defines data-type TINE in
terms of three primitive operations. Advance is
the operation of beginning at the time indicated
by the first argument and advancing by the amount
of time indicated by the second argument, fiotafter
is the relation, i.e., boolean-valued function,
that holds between two times If the first is ear-
lier or simultaneous with the second. Reverse is
the operation that maps each time onto Its mirror
image with respect to the null element Notlne.
Axioms 1-3 characterize Kotafter as a partial or-
dering and Axiom 4 makes that ordering total. Ax-
iom S characterizes Notime as the neutral element
with respect to Advance. Axiom 6 says that Advance
is commutative and Axiom 7 says that it Is associ-
ative. Axiom 8 says that Advance moves up in the
partial ordering if the amount It advances by is
above Notime 1n the partial ordering. Axiom 9 says
that Reverse produces the reverse of a time with
respect to Notime.

Using Notio-e, rather than something like Precedes,
simplifies the axioms somewhat, while omitting Re-
verse would result in a slightly oifferent data
type and thus a different notion of time. On the
one hind, more implementations would then be pos-
sible, since the specification would not require
all of them to support the possibility of reversal;
on the other hand, fewer features of each allowed
implementation could be made use of, since the
specification would not permit the use of reversal
even in those implementations that could support
It. As usual, which notion of time we choose de-
pends entirely on the system we are dealing with
and what we want It to be capable of.

DATA WE: TIME;
PRIMITIVE OPERATIONS:

tlm«. • Advancedime.,time);

boolean - Notafter(tIm« ,i;ire);

time. » ReversedIroe.);

AXIOMS:

WHERE t.tj.tj.t. ARE TIMES;

WHERE Notime IS A CONSTANT TIHE;

1. Notafter(t.t) - True;

2. EntailsfNotafterftjttj) I NotefterU,,*•),
Notafter(tj,t.)) - True;

3. EntaiU(Notafter(t1,t2) & Notafter(t,.tj).
Equal(tjrtj)) - True;

H. NotefterUj.tj) t Notefter(t2.t,) - True;
5. Advanced ,Notime) • t;

6. Advanced, ,tj " Adva -.edj.t.);

7. Advanced..Advance(tj.tj) »

Advance(Advance(t.,t.),t.);

8. Notafter(Advanced,,t2),t,) -

Notafter(t,,KotI me);

9. Advance (Re verse d),t) • Not I me;

END TIME;

Figure 2

Data Type TIME

The operations Entails, &, and Equal, which appear

in Axioms 2 and 3,are assumed to have been charac-

terized independently, the first two on type BOO-

LEAN [9] and the third as a universal operation on

any type.

50

In our description of the «Hebraic specification

in Figure 1, we noted that the set of integers 1s

assumed to have been characterized independently

in terms of an algebraic specification of its own.

In general, in the characterization of a particu-

lar type, the relevant algebra will contain a num-

ber of sets (in l), all but on«? of which has been
characterized already and so can serve as a basis

for defining the new type of interest. Mathemati-

cally, we could just as well view the various sets

as mutually characterizing each other vit the re-

lationships expressed In the axioms, just as we

view the type of Interest and the primitive opera-

tions as mutually characterizing each other, but

this point of view can get rather confusing.

Once we have our object types algebraically char-

acterized, we can then go ahead and define more

complicated operations, either on a single type or

on more than one type, in terms of the primitive

operations on the types. Given our algebraic

specification of groups, for example, we can define

a power function on groups, as illustrated 1n Fig-

ure 3. The tree structure ii» Fi^ire 3, called t
control wap, gives a complete specification of how

to find the n power of any group element. It

could be simplified considerably through the use

of various abbriviatory notations and conventions,

but it has been intentionally written out here in

full in order to illustrate as many of the avail-

able formal devices as possible.

The functions K^, Clonej, and Identify, are univer-

sal operations defined on every type. K. is the

constant function, which produces 1 as output for

every Input. Clon». is the clone function, which

produces es output 1 copies of whatever It takes as

input, In effect producing new names for its Input.

figure 3

Control Map for the Power Function on Groups

51

entify! Is the identity function that takes 1- Id

tuples as Input and produces as output the j

components of those tuples. K, and Identify, »re
standard function* in mathematics and Clone, Is

very useful as a way of guaranteeing that every

variable in a software system gets used as input

and output exactly once. This aids In keeping

track of variables so the efficiency of storage use

can be maximized.

The syubols mff In Figure 3 are sinply names as-
sio:ied to the functions performed by tree subcon-

flgurations and have no further significance. Ev-

ery non-terminal node except the topmost is occu-

pied by such a function, whose Inputs and outputs

are as indicated by the typed variables shown and

whose mapping is indicated by Its decomposition

Into subfunctions. Every terminal node, except

those occupied by the function ueing defined, is

occupied by either a primitive operation on one of

our types, a universal operation, or an operation

thüt Is assumed to have been already characterized

by Us own control map on one (or more) of our

types. Oiff, meaning difference, and lopp, mean-

ing integer opposite (output » -n for input •» n),

for example, might be primitive operations on the

Integer type or control map functions, depending on

what our algebraic specification of the integers

looks like [9]. The topmost node, of course, is

occupied by the function being defined, whose map-

ping is characterized by the entire tree. This

function caii also appear at terminal nodes, Indica-

ting recursive evaluation, but Its variables must

must be different at each appearance in order to a-

void circularity.

The real meat of a control map is in its control

structures, which determine how a function relates

to those into which It is decomposed. The tree in

Figure 3 exemplifies three primitive control struc-

.turesr set partition, class partition, and composi-

tion. The set partition primitive control struc-

ture Is illustrated by the immediate decomposition

of the topmost function. It partitions the domain

of the function into non-overlapping, exhaustive

sets and specifies the restriction of the decom-

posed function to each of those sets. In Figure 3,

the Integers are partitioned into those which »re
less than» equal to, and greater than zero, and the

restrictions of In? Power function to those sets

are specified accordingly. Functijns f,, fr, f*

and f.Q illustrate the class partition primitive

control structure, which matches specific inputs

and outputs in an exhaustive and non-overlapping

way. Th» composition primitive control structure,

which makes the output of one iubfunction the Input

of another, is Illustrated by functions f,, fj. fy.

f,, fg, and fg. Note that, while decomposition In

a control map need not be binary, as illustrated by

f, and the topmost node, it can always be made bi-

nary by the introduction of new f. functions with

the appropriate control structures.

Mathematically, the effect of control maps seems to

be to write arbitrary functions as polynominal

functions on heterogeneous algebras except that re-

cursion Is allowed, as in Figure 3. Given an arbi-

trary function to be performed by some

software system, for example, we may know what sets

the function maps fror» »ri into, *»ut we may not

know what types It maps from and Into. That Is. we

may not know what primitive operations will be re-

quired at the terminal nodes of our control map.

The principles for constructing control maps fa-

cilitate the determination of these primitive op-

erations and thus of the types involved in the

software system our function is a part of.

Control maps can be simplified considerably by de-

fining abstract control structures, which abbrevi-

ate recurrent combinations of the primitive control

structures. For example, Figure 4a contains the

control map for a Regress function on our data type

TIME, defined entirely in terms of primitive con-

trol structures (1n this case, one Instance each of

composition and dass partition). The part of the

figure that Is surrounded by a dotted line, how-

ever, Is an instance of a very common control

structure, called COJOtN [10], which enables us to

have the same variable accessed by more than one

52

V*»'«« :«,.v i, • »n-jtt ',.1.1

lMt*«t :«>•.»»• '.I'H!.-« C«V0lt

Figure 4

Two Control Maps for
Operation Regress on Data Type TIME

function in a system. In this case, the effect of

the encircled tree subconfiguration is simply to

guarantee that tr has the same value as tyi as

shown by the arrow. We can thus simplify the con-

trol map by replacing t5 by t, and the relevant

subconfiguration by the abstract control structure

COJOIN, as shown in Figure 4b. The primitive con-

trol structures are needed for theoretical pur-

poses, to guarantee system reliability, for ex-

ample, as discussed in [1], but for convenience

1n practical system design abstract control struc-

tures may be used instead, as long as they are ex-

plicitly decomposable into the primitives. New

abstract control structures of any complexity can

be defined in a similar way, as discussed 1n [8]

and [10].

One of the useful things about control maps is

that they enable us to refine the notion of primi-

tive operation in a very precise way. Given an al-

gebra, with its associated primitive operations,

we can say that some other function on the types

of that algebra is not primitive, if it can be de-

composed into the primitives by means of a control

map. Any desired function on the types of the al-

gebra that cannot be defined in te *f the primi-

tives with a control map must then o Jded to the
operation specification of the algebra as a new

primitive, thereby creating a new algebra. Given

an algebra, in other words, the control maps parti-

tion the set of functions definable on the types of

the algebra into two classes: those which are rep-

resentable as control-map functions on that algebra

and those which are not so expressable. New alge-

bras can be created by adding members of the latter

class successively as primitive- operations to the

operation specification of the original algebra,

with a new algebra heing created with every addi-

tion.

Functions which are representable as control maps

need not always be represented as control maps,

however. AXES allows us to write such functions as

what are called derived operations; these are char-

acterized by providing assertions that specify the

interactive behavior of the function with other

functions that have been characterized independent-

ly. Given an algebraic specification of the natur-

al numbers as a data type with the successor func-

tion as one of Its primitive operations and a bool-

ean-valued control map-defined function Factor that

maps a pair of naturals onto True if the first is a

factor of the second and onto False otherwise [9],

we can define a greatest-common-denominator func-

tion GCO in AXES as follows:

DERIVED OPERATION: n. * GC0(n|tn2);

WHERE n,,n,,n,,m ARE NATURALS;

Factor(GCD(r> nj,n.) • True;

Factor(GCD(n ,n2),n.) » True;

53

tnt*Ms(An<l(And(r»ctor(n. ,n.),factoi {n. ,n2)),

Kot{7Equ.il?(n1),Zero))), Factor(n..

CC[)(nj,n?))) *» True;

END GCD;

What this definition says Is that tht GCD of two

natural numbers Is a natural number which 1s a

factor of both and which has every factor of both
as a factor of its own. The function Is thus de-

fined in terms of its behavior with respect to oth-

er functions, rather than In terms of Its decompo-

sability into other functions. Similarly, we could

just as well have defined our Regress function on

data type TIHE as a derived operation as follows:

DERIVED OPERATION: time - Regress(time ,

WHERE t,.t2 ARE TIMES;

Advance(Regress(t.,t-),t.) - t.;

END Regress;

There Is no difference between the functions, I.e.,

mathematical mappings, that we get from control-

map definitions and those that we get from derived-

operation definitions. The only difference Is in

how we choose to specify the functions, and this Is

largely a matter of convenience.

The assertions used in defining derived operations

look very much like the axioms that ire used 1n de-

fining primitive operations, but their status Is

really quite different. Given the set of primi-

tive operations for son« data type, wa can prove

mathematically the existence of other functions;

It is these functions, such as GCD (see, e.g., [11]

for a simple existence proof), that may be specifi-

ed as control-map operations or derived operations.

Explicitly specifying these latter functions does

not change the algebra underlying the data type in

any way, since their existence as mathematical ob-

jects Is already entailed by the algebra. Some-

limes, as In the case of GCO 1n fact, the proof may

even provide guidelines to the construction of an

appropriate control map, but 1t Is up to us whether

we actually go ahead and construct the control map

or whether we treat the function as a derived opera-

tion. Functions whose existence is not so entailed,

however, r.ust be added to the primitive operation

specification and characterized In terms of axioms,

thus creating a new algebra, as noted earlier.

3. DISTINCTIVE FEATURES OF HOS

The theory we have developed here differs from

other proposals for algebraic data-type specifica-

tion that have appeared in the literature ([4],[6],

[7].[12].03]) in at least three very Important
ways'. First, HOS distinguishes very sharply. In
concept, between the specification of a software

system and its Implementation. Liskov and Berzlns

[12] require that "All objects of an abstract data

type must have been produced by some sequence of

the constructor operations of that type" (p. 13-

12), and Guttag [4] states that "the need for op-

erations to generate values of the type Is clear"

(p. 45). In our opinion, this requirement reflects

• confusion between specification and Implementa-

tion. Clearly, an Implemented system must have

some way of generating the objects It deals with.

It does not fol'.ow, however, that the manner of

generation must necessarily be Included In the

specification of the system. For a particular sys-

tem we are interested In, it simply may not be im-
portant for us to know how the objects got to be

the way they are. As Liskov and Zilles [7] point

out,

It should be possible using the specification
method to construct specifications which de-
scribe the Interesting properties of the con-
cept and nothing more. The properties which
are of interest must be described precisely
and unambiguously but In a way which adds as
little extraneous information as possible.
In particular, a specification must say what
function(s) a program should perform, but
little, if anything, about how the function
Is performed. One reason this criterion Is
desirable 1s because It minimizes correctness
proofs by reducing the number of properties to
be proved (p. 9).

It seems clear, in these terms, that the manner of

generation of objects may very well be a part of
the "what" of a system, but that It could equally

well be a part of the "how". Some systems will

include object-generating functions in their speci-

fications and sone will not. We cannot stipulate

54

ahead of time which of these night be the case for
o

any system we might come across .

A second differetce between HOS and other theories

is its capacity tt define non-primitive operations

in a natural way, either as control-map operations

or as derived operations. Control maps are unique

to HOS and should require no further comment. A

little more should be said, however, about derived

operations, so that their usefulness can be fully

appreciated.

We have noted that the assertions used in char-

acterizing a derived operation look very much like

axioms, but differ in that the existence of the

operations they characterize can be proven mathe«

matically from axioms we already have. The very

fact that we must construct such a proof, however,

each time we introduce a derived operation signifi-

cantly simplifies the proof of consistency of the

axioms themselves. Guttag, Horowitz, and Musser

[6], for example, apparently allow us to define

operations only by Including axioms that character-

ize them in the axiom specification of an algebra.

In a large system, therefore, the number of "ax-

ioms", and thus the task of proving their consis-

tency, could turn out to be considerable. In HOS,

in contrast, we must test each new non-control map

operation to see if the existence of Its functions

follows from the axioms we already have; if so, we

need add no new axioms to our algebra, because the

operation is not primitive, but derived. In ef-

fect, the use of derived operations enables us to

modularize the consistency proof for our axioms.

Whereas Guttag, Horowitz, and Musser might end up

with the formidable task of having to prove the

consistency of a hundred "axioms", we might be able

to decompose that task into several smaller proofs,

each involving a proper subset of the proposed "ax-

ioms'* , with one such subset for each derived opera-

tion. The savings in time and effort could be con-

siderable, and the proofs could also provide in-

sights into constructing appropriate control maps,

should we decide later that this is desirable.

A third distinguishing feature of HOS is Its nat-

ural suitability for the specification of large

and very large software systew.. After reviewing

several specification techniques for data abstrac-

tion, including a version of algebraic data-type

specification, Liskov and Zilles [7] point out that

The specification techniques discussed In this
paper can adequately describe modules—the
blocks of which systems are built—but it 1s
not clear that they can describe the entire
system. For example, Parnas has shown how a
KWIC system can be modularised... and each
module was described using his specifications,
but the specification of the system as a whole
was given in English. It seems unlikely that
an entire system can be viewed as a single,
top-level module, so perhaps a different kind
of specification technique is desirable here
(p. IB).

In our opinion, the inadequacy that liskov and

Zilles point out results from a confusion between

the need to decompose a system into modules and the

need to characterize the kinds of objects the sys-

tem deals with. In HOS the latter need is satis-

fied by algebraic data-type specifications and the

former by the use of control maps. Once the data

types of a system are formally characterized, the

overall function the system performs can be decom-

posed into subfunctions arranged hierarchically in

a control map. It 1s these subfunctions, along

with the data types that serve as their domains and

ranges, and not the data types themselves, that

constitute the modules Into which the system is de-

composed. It is the control map that serves as the

formal specification of the "entire system".

As Hamilton and Zeldin suggest [14], there Is good
reason to believe

that the basic properties of "large" systems
are not really different than those of "small"
systems. It Is only that small systems are
kinder, yet more deceptive, in not displaying
their real properties. But the time has come
when one is forced by large systems to look at
properties of systems. They are more basic
than one cares to admit (p. 1).

From a mathematical point of view, for example, the

notion of control map seems to follow quite natur-

ally from that of algebraic data-type specifica-

tion, by combining the notion of polynominal

55

function on a heterogeneous algebra with that of

recursive call; it was only by careful empirical

examination of the properties of large real-world

systems, however, that the notion of control map

was actually developed and Its relationship to al-

gebraic data-type specification discovered. LIs-

ko d Zilles' observation about the inadequacy

of other approaches to algebraic data-type specifi-

cation under. >res the need for careful analysis

of the actual p» »rties of large systems in de-

veloping a general specification methodology.

FOOTNOTES

1. Hamilton and Zeldin also talk about the layers
of a system, but we will not deal with these" here.
See 115), [16] for some discussion of this impor-
tant notion.

2. In an otherwise stry good review of HOS [17)»
Peters and Tripp make the erroneous statement that
In HQS "the Issue of data base design was, at best,
addressed Implicitly" (p. 94). Actually, as we
will see In this paper, some of the better-known
aspects of KOS, such as control maps, follow quite
naturally from its manner of specifying data types
and vice versa. Algebraic data-type specification
and control-map function specification »re comple-
mentary aspects of a complete systems theory and
neither makes much sense, 1n our opinion, without
the other. We thus fully agree with Peters and
Tripp that "the design of code and data base must
be synchronous". See [ft] and [18] for further
discussion.

3. In HOS we also allow the ranges to be Carte-
sian products of I members to maximize the genera-
lity of the theory. No mathematical problems a-
rise from this extension, as far as I can tell.

4. In [9] 1 called these categories because of
their similarity to the syntactic, semantic,
phonological, and lexical categories of linguis-
tics [19], but 1 think this term might be mislead-
ing, since "category" has a somewhat different
meaning In mathematics [20]. The original term,
"phyla", used by Birkhoff and Llpson when they
first Introduced heterogeneous algebras [2] I find
somewhat unnatural, but this 1s, of course. Just a
matter of taste. The word "type", In this context,
is due to Guttag [4].

5. The AXES specification language uses the terms
"function" and "operation" in slightly different
ways [8], but this difference 1s not relevant for
us here, so we will use the two terms Interchange-
ably.

6. Guttag, Horowitz, and Musser [6] object to the
use of elements like REJECT which "are implicitly
included 1n all types" (p.65) because, they argue,
"then one can no longer always assume that the

axioms are universally quantified over the types".
This objection presupposes, however, that the mean-
ing of "universal quantification" is somehow known
a priori, rather than having to be specified expli-
citly in the foroal semantics of our specification
language. Given an explicit formal semantic the-
ory, it is a simple natter to Include in the «.em-
antic rule for "universal quantification" • state-
ment to the effect that REJECT Is ignored In the
assignment of truth values. See [21], [22]» and
[19] for extensive discussion of the form such a
theory might take.

7. See, also, footnote 6.

8. Guttag's decision [4] to treat an Individual
object "as a nullary 'operation*, rather than as a
•value'" (p. 43) reflects a particular Instance of
this conceptual confusion, we think. Nullary op-
erations are degenerate objects, like point circles
and circular ellipses, which, though counterintui-
tive, ire often Introduced in mathematics to maxi-
e>ize elegance and simplify proofs, 1n part through
the elimination of exceptional cases. (See [9] for
some discussion of the counterintuitive character
of nullary operations.) In Guttag's system, how-
ever, they seem to play no role other than that of
Identifying distinguished objects, such as Zero and
Newstack, so It seems just as well to dispense with
such operations altogether. In HOS we specify the
existence of distinguished objects by simply stat-
ing that the objects exist; this is done In the
WHERE statements of a data-type specification, as
we saw 1n Figures 1 and 2. We thus state what
distinguished objects a system deals with without
saying how they get to be the way they are In par-
ticular implementations.

REFERENCES

[1] Hamilton, M. and S. Zeldin, "Higher Order
Software—A Methodology for Defining Software",
IEEE Transactions on Software Engineering, Vol. SE-
2TNO. 1, torch"!9FCppTin2.

[2] Birkhoff, G. and J.O. tipson, "Heterogeneous
Algebras", Journal of Combinatorial Theory, 8,
1970, pp. 1TS-T33.

[3] Behnke, H., F. Backman, K. Fladt, and W. SUss
(eds.), Fundamental-, of Mathematics, Volume]_:
Foundations of_ Mathematic s/Yh'e ReäT Number System
anOTgpbra. HIT Press, UmbfTdgerMA, 19/4.

[4] Guttag, J.V., "The Specification and ApplNa-
tion to Programming of Abstract Data Types", Tech-
nical Report CSRG-59, University of Toronto, Tor-
onto, September 1975.

[5] Parnas, D.I., "A Technique for Software Module
Specification with Examples", tanra. of the ACM,
Vol. 15. No. 5, May 1972, pp. T30"O3b":

[6] Guttag, J.V., E. Horowitz, and D.R. Musser,
"Some Extensions of Algebraic Specifications", In
Wortnan, D.B. (ed.), Proc. of an ACM Conference on

5b

Language Design for Reliable Software, Raleigh,
NC, March 28:30, 1977, "As social ion for Computing
Machinery, New York.

[7] Liskov, D.H. and S.N. Zilles, "Specifica-
tion Techniques for Data Abstractions", IEEE
Trans, on Software Engineering,, Vol. SE-Y, Ho. 1,
March 1975, pp. f-t§l

[8] Hamilton. M. and S. Zcldin, "AXES Syntax De-
scription", TR-4, Higher Order Software, Inc.
(hereafter cited as HOS, Inc.) Cambridge, MA,
Dec. 1976.

[9] Cushing, S., "Algebraic Specification of Ab-
stract Data Types/The Intrinsic Types of AXES",
Appendices III and IV of [8].

[10] "Technique-, for Operating System Machines",
TR-7, HOS, Inc., Cambridge, MA, July 1977.

[11] Lange, S. Algebraic Structures, Addison-
Wesley, iWoih«!,** , 1967.

(12) Liskov. B.H. and V. Benins, "An Appraisal
of Program Specifications", to appear in [23].

[13] Zilles. S., "Algebraic Specification of Data
Types", Progress Report 11, Laboratory for Compu-
ter Science, MIT, Cambridge, MA, 1975.

[14] Hamilton, M. and S. Zeldin, "Discussion of
an Appraisal of Program Specifications", to ap-
pear in [23].

[15] Hamilton, M. and S. Zeldin, "Integrated Soft-
ware Development System/Higher Order Software Con-
ceptual Description", TR-3, HOS, Inc., Cambridge,
MA, Nov. 1976.

[16] Hamilton, M. and S. Zeldin, "The Manager as
an Abstract Systems Engineer", Digest of Papers,
fall C0MPC0N 77 (Washington, D.CT), TE'EE Computer
Society, Cat. No. 77CH1258-3C, Sept. 6-9, 1977.

[17] Peters, L.J. and L.L. Trlpp, "Comparing Soft-
ware Design Methodologies", Datamation, Nov. 1977,
pp. 89-94.

[18] Cushing, S., "The Software Security Problem
and How to Solve It", Revision 1, TR-6, HOS, Inc.,
Cambridge, MA, July 1977, reprinted in [10].

[19] Cushing, S., "An Algebraic Approach to Lexi-
cal Meaning", presented at the Annual Meeting, Lin-
guistic Society of America, Chicago, Dec. 28-30,
1977.

[20] MacLane, S., Categories for the Working
Mathematician. Springer-Verlag, New York, 1971.

[21] Cushing, S., "The Formal Semantics of Quanti-
fication", UCLA dissertation, available from the
Indiana University Linguistics Club, Bloomington,
Indiana.

[22] Cushing, S. "The Formal Representation of

Truth Conditions in the Lexicon of a Grammar",
presented at the Interdisciplinary Linguistics
Conference on Approaches to the Lexicon, University
of Louisville, Louisville, Kentucky, March 10-12,
1977.

[23] Wegner, P., J. Oennis, M. Hawser, and D.
Teichroew, Proc. of the Conference on Research 0J-
rec t i ons j_n"So"f tw'a re" Technology, to" be pub fished by
MlfPress fn Spring 1978.

57

PART 5

Software Engineering,
Artifical Intelligence am? Cognitive Processes

by

S. Cushing

I 5

r

59

Softwa r e Engineering, Artificial Intelligence, and Cognitive Processes

Work in 1ann«»»3e ar.c* mind in artificial intelligence (AI) pre-

supposes a parallelism between minds and information-processing systems,

a parallelism that is also assumed or argued for by some non-AI research-

ers (Miller, 1976;rtiller and Johnson-Laird,1976;Fodor,1975). We agree

that such a methohor can be useful in gaining insight into the nature

of cognitive processes, but we think that this is possible only if a

number of conditions are satisfied. First, we think that any adequate

computer model of the mind will have to be formulated not in terms of

programs, as in current AI work, but in terms of software systems, as

discussed in the newly emerging field of software engineering. We find

it highly implausible that complex mental processes can be modeled

adequately in terms of sequential lists of instructions, which

programs, by definition, are. The mind is a highly complex system of

related and interacting, but essentially autonomous components, a"d it

seems likely that some of the more interesting generalizations concerning

its structure and operation will involve the interfaces betv/een these

components, at least as much as the individual programs that may make them

up. Not surprisingly, it is precisely in regard to their interfaces that

some of the more interesting properties of software systems have emerged

(Hamilton and Zeldin, 1976a,b).

Second, we think that such an approach to the study of mind would re-

quire a genuine theory of software systems, rather than the sort of ad hoc

programming that is endemic to current AI work. Dresher and Hornstein

(1976, 1977, 1978) argue that natural language-related work in AI has been gen-

erally devoid of explanatory value because of the ad hoc character of the

programs involved. Most of this work seems to be not scientifically, but

technologically oriented, i.e., geared toward developing machines that

can process sentences of natural language, rather than seeking general

principles that can serve as genuine scientific explanations of linguis-

tic phenomena. The ad hoc character of computer programming has become

a serious problem much more generally, however, particularly in connection

61

with the specification of large and very large software systems, and it.

is precisely this problem that motivated the development of software en-

gineering in the first place. While this motivation has also been pri-

marily technological, e.g., minimizing cost in the development of large

systems, Its aim is to develop a general theory of software systems that
4

accounts for their essential properties in a principled way. Such a

theory might very well be of genuine scientific interest, precisely be-

cause of its concern for general explanatory principles.

Such a theory would characterize the notion "possible software

system" and, in accordance with the parallelism mentioned above, could

thL* be taken equally as characterizing the notion "possible mind," just

as the notion "possible grammar" as a device that generates structured

strings of objects is viewed in linguistics as providing an abstract char-

acterization of the notion "possible language." Given such a formal

characterization of "possible mind," we might then be able to constrain

it in accordance with known empirical facts to get a notion of "possible

X mind," where X - "human" or any other species, just as linguists try to

constrain grammars to get a characterization of "possible human language."

The notion "possible human mind" might then be further constrainable in

accordance with the idiosyncratic facts of an individual's culture and life

experience, giving us an explanatory account of an individual human mind

and its associated behavior. The difference between this approach and

the one current in AI would be essentially the same as that between genera-

tive and taxonomic linguistics. Rather than starting from scratch, as

it v/ere, and building up programming systems ad hoc, we would be beginning
witn a principled account of the sort of entity we assume the human mind

to be and then narrowing that account down in accordance with empirical

facts to determine precisely which entities of that sort the mind really is.

Hamilton and Zeldin (1976a,b,c,d) argue that the notion "possible

software system" can be formalized in terms of three theoretical con-

structs— data tyj^ej,, the kinds of entities that systems operate on or pro-

duce; functions (or operations), the entities that operate on or produce

members of data types; and control structures, the relationships in

accordance with which functions can be decomposed or combined—and that

62

each of these constructs can exist on various layers, which are strikingly

reminiscent, in concept, to the "levels of description" of generative

grammar. They also provide a formal methodology for representing these

constructs abstractly, in terms that are entirely independent of a system's

implementation in particular configurations of hardware or resident software

(operating systems, etc.)« Their theory seems to imply that a software

system can be characterized as a set of homomorphically related polynomial

functions on heterogeneous algebras (Cushing, to appear). To the extent

that it does, in fact, capture the notion "possible software system," we

can presumably take the theory as equally a characterization of "possible

mind," and proceed to constrain it accordingly.

Cushing (1977a,c) argues that the notion of algebraic data-type

specification that is incorporated in Hamilton and Zeldin's theorjr pro-

vides a revealing model for the semantic lexicon of a natural language,

as one component of the human mind. The model incorporates an empirical

claim as to where in the lexicon we would most naturally expect to find

constraints, as part of a general characterization of the kind of sub-

components that make it up. Cushing argues that the semantic lexicon

is a heterogeneous algebra 'and that some seemingly unrelated issues that

have received attention in the recent linguistic and psycholinguistic

literature (e.g., lexical decomposition vs. meaning postulates, functional

notation vs. semantic markers) receive a natural and revealing reform-

ulation, when viewed in this light.

We will not speculate here on how fruitful this line of research will

ultimately turn out to be, because that can be determined only by time

and further work. We do think, however, that something along these lines

is a necessary prerequisite to a computer-based model of cognition. It

may, in fact, turn out that the mind is not a computational device at all

and that entirely new concepts will have to be developed to account

adequately for its operation. Our point is simply that any adequate theory

of mind will have to base itself firmly on the search for general explan-

atory principles ard that this applies to computationally-based theories

as much as to any other.

63

(

Footnotes

1. It is not surprising that the emergence of software engineering

has yet to have an impact on AI. The field is so new that

the first journal devoted specifically to it (IEEE Transactions

on Software Engineering) did not appear until 1975, and, even as

late as 1972, O.L. Parnas could still refer legitimately to "the

so-called 'software-engineering' problem" (p. 330). For a general

survey of some current trends in the field, see Wegner, Dennis,

Hammer, and Teichrow (1978). (Tnefact that some authors still use
the terms "program" and "system" interchangeably should not be allowed

to obscure the important conceptual distinction involved. This differ-

ence should become clearer in what follows.)

2. Some recent physiological evidence which, it seems to us, can be

naturally interpreted as directly supporting this contention is

reported in Hochstein and Shapley (1976a,b), Levick (1975), and

Werblin (1974), We thank Dr. Michael Zeldin of the Harvard Biology

Laboratory for bringing this work to our attention.

3. See, for example, Asch, Kelliner, Locher, and Connors (1975),

Corelli and Williams (1976), Hamilton (1971, 1972), Hamilton .and

Zeldin (1976c, Chapter 1; 1977), Ramamorthy and Ho (1975), and

Richter and Mason (1976) for some discussion of this motivation.

4. See, for example, Bratman and Court (1975), Davis and Vick (1976),

Hamilton and 7eldin (1973a,b;1976a,b,c,d; 1977), HOS (1977), Mills and

Wilson (1976), Richter and Mason (1976), Robinson, Levitt, Neumann,

and Saxena (1975), Robinson and Levitt (1977), Stevens, Meyers, and

Constantine (1974), and Wilson (19/6) for some specific proposals in

this regard. For comparative discussion of a number of such propos-

als, see Cushing (1977b), Hamilton and Zeldin (1976c, Chapter 2),

and Peters and Tripp (1977).

5. See Birkhoff and Lipson (1970) for a general discussion of heterogen-

eous algebras.

\ %

6. See Cushing (1976a) for elaboration of this notion and Guttag (1975)

and Zilles (1975) for a very different approach to algebraic data-

type specification. Some of the differences are discussed briefly

in Hamilton and Zeldin {1978).

7. See Cushing (1976b,part IV;1976c;1977d) for some related ideas concern-

ing the algebraic representation of lexical meaning.

66

1. Asch, A., D.W. Kelliher, J.P. Locher III» and T. Connors (1975)

"DoD Weapons Systems Software Acquisition and Management

Study Volume 1, MITRE Findings and Recommendations", Vol.1,

MTR-6908,The MITRE Corporation, Bedford, Massachusetts, May 1975.

2. Birkhoff, G. and J.D. Lipson (1970) "Heterogeneous Algebras",

Journal of Combinatory Theory, 8, 115-133.

3. Bratman, Harvey and Terry Court (1975) "The Software Factory",

Computer, 8, 7.

4. Corelli, Robert R. and Thomas G. Williams (1976) "Management Overlay

for the BMDATC Software Development System", System Development

Corporation, Huntsville, Alabama, 15 December 1976.

5. Cushing, Steven (1976a) "Algebraic Specification of Abstract Data

Types/The Intrinsic Types of AXES", Appendices III and IV of

Hamilton and Zeldin (!976d).

6. Cushing, Steven (1976b) "The Formal Semantics of Quantification",

UCLA dissertation, available from Indiana University Linguistics

Club, Bloomington, Indiana.

7. Cushing, Steven (1976c) "The Group Structure of Quantification",

Ü.CLA Papers In Syntax, 7,1-7.

8. Cushing, Steven (1977a) "Lexical Decomposition and Lexical Algebra",

presented to the MIT Workshop on Language and Cognition,

February 1977.

9. Cushing, Steven (1977b) "The Software Security Problem and How to

Solve It," Revision 1, TR-6, Higher Order Software, Inc.

(hereafter cited as HOS, Inc.), Cambridge, Massachusetts, July

1977, reprinted in HOS (1977).

10. Cushing, Steven (1977c) "An Algebraic Approach to Lexical Meaning",

to be presented at the Annual Meeting, Linguistic Society

of America, Chicago, Illinois, December 1977.

11. Cushing, Steven (1977d) "The Formal Representation of Truth Con-

ditions in the Lexicon of a Grammar", presented at the Inter-

disciplinary Linguistics Conference on Approaches to

the Lexicon, University of Louisville, Louisville, Kentucky.

March 1977.

67

12. Cushing, Steven (to appear) (work in progress).

13. Davis, CG. and C.R. Vick (1976) "The Software Development System",

in supplement to Prjoceedijwjs of the 2~- International Confer-

PiLc^. PJ1 Software Engineering, <Sa n Francisco, IEEE Cata 1 og No.

76hl125-4 C, October 1976

14. Dresner, B. Elan and Norbert Hornstein (1976) "On Some Supposed

Contributions of Artificial Intelligence to the Scientific

Study of Language", Cognition, 4, 321-398

15. Dresher, B. Elan and Norbert Hornstein (1977) "Reply to Schänk and

Wilensky", Cognition, 5, 147-149.

16. Dresher, B. Elan and Norbert Hornstein (1978) »Reply to Winograd",

to appear in Cognition.

17. Fodor> Jerry (1975) The language of Thought, Thomas Y. Crowell,

New York.

18 Guttag, J. (1975) "The Specification and Application to Programming

of Abstract Data Types", Technical Report C5RG-59, University of

Toronto, Toronto, September 1975.

19. Hamilton, Margaret (1971) "Management of Apollo Programming and Its

Application to the Shuttle", Software Shuttle Memo No. 29,

The Charles Stark Draper Laboratory (hereafter cited as CSDL)

Cambridge, Massachusetts.

20. Hamilton, Margaret (1972) "The AGC Executive and Its Influence on

Software Management", Shuttle Management Note 2, CSDL,

Cambridge, Massachusetts, February 1972.

21. Hamilton, Margaret and Saydean Zeldin (1973a) "Higher Order Software

Requirements", Doc. E-2793, CSDL, Cambridge, Massachusetts,

August 1973.

22. Hamilton, Margaret and Saydean Zeldin (1973b) "Higher Order Software

Techniques Applied to a Space Shuttle Prototype Program",

in Goos and Harmanis (eds.), Lecture Notes in Computer Science

Vol._ 19, Springer-Verlag, New York, pp. 17-31; presented at

Program Symp. Proc. Colloque sur la Programmation, Paris, France

August 1973.

23. Hamilton, Margaret and Saydean Zeldin (1976a) "Higher Order Software--

A Methodology for Defining Software", IEEE Transactions on

Software En^ine^rinjj SE-2, 9-32.

68

#U Hamilton, Margaret and Saydean Zeldin (1976b) "The Foundations for

AXES: A Specification Language Based on Completeness of Control",
Doc. R-964, CSDL, Cambridge, Massachusetts, March 1976.

25- Hamilton, Margaret and Saydean Zeldin (1976c) "Integrated Software

Development System/Higher Order Software Conceptual Description",
TR-3, HOS, Inc., Cambridge, Massachusetts, November 1976.

26-. Hamilton, Margaret and Saydean Zeldin (1976d) "AXES Syntax Spec-
ification", TR-4, HOS, Inc., Cambridge, Massachusetts,
December 1976.

27. Hamilton, Margaret and Saydean Zeldin (1977) "The Manager as an
Abstract Systems Engineer", Proceedings, COMPCON 77 Fall Conference,
IEEE Computer Society, Washington, D.C., September 6-9, 1977.

28. Hamilton, Margaret and Saydean Zeldin (1978) "Discussion of an
. Appraisal of Program Specifications", to appear in Wegner,

Dennis, Hammer and Teichrow (1978).
29. Hochstein, S. and R.M. Shapley (1976a) "Quantitative Analysis of Retinal

Ganglion Cell Classifications", Journal of Physiology, 262, 237-264.

(| 30. Hochsteln, S. and R.M. Shapley (1976b) "Linear and Nonlinear Spatial
Subunits in Y Cat Retinal Ganglion Cells", Journal p„f Physiology,

262, 237-284.
31. HOS (1977) "Techniques for Operating System Machines", HOS, Inc.,

I • Cambridge, Massachusetts, July 1977.

32. Levick, W.R. (1975) "Form and Function of Cat Retinal Ganglion Colls".
Nature, 254, 659-662.

33. Miller, George (1976) "Semantic Relations Among Words: I", presented
I at MIT Convocation on Communications, Cambridge, Massachusetts,

March, 1976.
34. Miller, George and P.N. Johnson-Laird (1976) Language and Percep-

tion, Harvard University Press, Cambridge, Massachusetts
» 35. Mills, H.D. and M.C. Wilson (1976) "An Introduction to the Infor-

mation Automat", IBM, Gaithersburg, Maryland, May 7, 1976.

36. Parnas, D.L. (1972) "A Technique for Software Module Specification
with Examples", Communications of the ACM, 15, 330-336.

37. Peters, Lawrence J. and Leonard L. Tripp (1977) "Comparing Software
Design Methodologies", M_afajn_on, November 1977, pp. 89-94.

69

38. Ramamorthy, C.V. and Siu-Vin F. Ho (1975) "Testing Large Software with

Automated Software Evaluation Systerr ", IEEE,Transactlong on

Software Engineering, SE-1, !• .

39. Richter, M.D. and J.I). Mason, (1976) "Software Requirements Engineering

Methodology", TRW Defense and Space Systems Group, Huntsville,

Alabama, 1 September 1976.

40. Robinson, L., K.N. Levitt, P.G. Neumann, A.R. Saxena (1975) "On

Attaining Reliable Software for a Secure Operating System",

Proceedings, International Conference on Reliable Software,

Los Angeles, April 21-23, 1975.

41.. Robinson, L., and K. N. Levitt (1977), "Proof Techniques for Hierar-

chically Structured Programs", Communications of the ACM, 20,

271-283.

42. itevens, W.P., G.J. Meyers, and L.L. Constantine (1974) "Structured

Design", IBM Systems Journal,

43. Wegner, Peter, Jack Dennis, Michael Hammer, and Daniel Teichroew (eds.),

Proceedings of the Conference on Research Directions in Soft-

ware Technology, October 10-12, 1977, to appear in Spring 1978,

MIT Press, Cambridge, Massachusetts.

44. Werblin, Frank S. (1974) "Control of Retinal Sensitivity, II. Lat-

eral Interactions at the Outer Plexiform Layer", The Journal of

General Physiology 63, 62-87.

45. Wilson, M.L. (1976) "The Information Automat Approach to Design and

Implementation of Computer-Based Systems", IBM, Gaithersburg,

Maryland, April 1976.

46. Zilles, S.N. (1975) "Algebraic Specification of Data Types", Com-

putation Structures Group Memo 119, Project MAC, Massachusetts

Institute of Technology, Cambridge, Massachusetts.

70

PART 6

Lexical Functions and lexical Decomposition
• An Algebraic Approach to Lexical Meaning

by
S. Gushing

I I
i

71

/

1. Functional Representation of Lexical Meaning

Research on lexical semantics in generative grammar, beginning with

Katz and Fodor (1963), has traditionally incorporated two basic assumptions:

first, that word meanings can be decomposed into primitive meanings and,

second, that these primitive meanings are best represented in terms of

semantic markers. The second of these assumptions is challenged by Miller

(1976) and the first by Fodor, Fodor, and Garrett (1975). Miller suggests

replacing semantic markers with a "functional representation" and Fodor,

Fodor, and Garrett suggest replacing lexical decomposition with "meaning

postulates". In this paper we examine Miller's proposal and derive some

of its implications for the structure of the semantic lexicon. In parti-

cular, we derive a model for the lexicon in which word meanings are decomposed

into functional primitives which are themselves characterized by something very

much like meaning postulates, and we argue that such a model follows naturally

from the use of "functional representation" for lexical meaning.

Miller questions "whether semantic markers, as they were defined by

Katz and Fodor, are the best way to represent the concepts shared

by different lexical entries" (p. 5) and proposes, instead, the use of "a

functional representation of word meanings, especially when we go beyond

nominal expressions to the more complex relations among verbs and preposi-

tions." To illustrate his proposal» Miller gives the "semantic decomposition"

of bring shown in Figure 1. He represents the "propositional information

contained" (p. 7) in a sentence in which bring occurs by "BRING (x,y_,),

where x is a pointer assigned to" a bringer "and i is a pointer assigned to"

73

something brought. The five lines of Figure 1 then illustrate how "BRING

(x,yj" might be broken down into specific combinations of other "functional

representations," such as "CQME (x),H "DO (x)", "CAUSE (x)M, and 'WCWJWINY

(x)"..

That is to say, brin^ would be decomposed into come, cause, and
accompany. Come,1n turn, would be decomposed into travel and
speaker's location; cause would be decomposed into possible
sequences of event?, and accompany would be analyzea into travel
and with. Each of these, in turn, might be further decomposed.
Since decomposition must stop somewhere, this program commits us
to the assumption that there are certain semantic primitives into
which all words can be analyzed.

"One assumes," Miller argues further, "that these primitives, whatever they

are, are cognitive universals, independent of particular languages."

Since Miller suggests the use of a "functional representation", it seems

reasonable to suppose that he indeed intends to be talking about functions1.

The use of "functional representation" for lexical meaning thus involves a

qualitatively different kind of claim from that involved in the use of

"semantic markers". Semantic markers are a kind of object that was

invented specifically for the representation of lexical meaning; they have

no significance outside of the theory in which they appear. Functions,

in contrast, are an independently well-defined kind of mathematical object;

to say that lexical meanings are, or can be represented as, functions automa-

tically predicts a number of things about the behavior of lexical meanings.

Equivalently, it forces us to ask a number of questions about lexical meaning

that would not arise if semantic markers were to be used instead.

In this paper we examine some of the implications of the use of functional

representation for lexical meaning, using Miller's decomposition of bring

as an example. We will not be concerned here with the question of whether

74

or not the example provides the correct analysis of bring, and we will thus

ignore many of the issues that would have to be dealt with in any attempt

to answer that question; in particular, we will not ask whether "meaning

postulates" might do a better job, by themselves, in characterizing the

meaning of bring. The result of our investigation will be a proposed

model for lexical meaning in which both "lexical decomposition" and

"meaning postulates" play a role. We will argue that the semantic lexicon

is a heterogeneous algebra, in the sense of Birkhoff and Lipson (1970),

and that the study of lexical meaning properly involves determining the

empirically correct characterization of such algebras for natural languages.

The logic here is a bit complex and a word of further clarification is

perhaps in order. Katz and Fodor (1963), as well as Katz (1972, 1977),

want semantic marker representation, semantic decomposition into primitives,

and no meaning postulates. Miller (1976) concurs in wanting semantic

decomposition into primitives and no meaning postulates, but wants to

replace semantic marker representation with functional representation.

Fodor, Fodor, and Garrett (1975) want meaning postulates instead of

semantic decomposition into primitives, but take no position on

representation, saying "all that we require is that formatives of the

natural language should correspond to formatives in the representational

system, whatever these latter may turn out to be" (p. 526). Since

semantic markers were introduced specifically to represent semantic

primitives, it seems reasonable to conclude that Fodor, Fodor, and Garrett

reject that notation, but we cannot draw the further conclusion that they

would necessarily accept functional representation, as Miller uses it,

since other options, e.g., traditional logical predicate notation, are also

available to them.

75

Hopefully, all of this will become somewhat clearer in what follows. I We will

be arguing, specifically, that the adoption of a functional representation

for semantic decomposition leads one to an algebraic model for the lexicon

which also involves "meaning postulates"; we will not examine the case 1n

which semantic decomposition is represented in terms of semantic markers.

It can be plausibly argued that semantic markers are themselves naturally

interpretable as a form of functional representation, in which case they

would also be covered by our argument, but this is not their intended inter-

pretation (Katz, 1977, p. 582), and we will not deal with it here.2

76

SE
MA
NT
IC
 D

EC
OM

PO
SI

TI
ON
 O

F
BR
IN
G:

BR
IN
G(
X,
Y)
:

CO

ME
(X

)
&
DO
(X
,S
)

&
CA

US
E(

S,
AC

CO
MP

AN
Y(

Y,
X)

)

CO
ME
(X
):

TO

(T
RA

VE
L(

X)
,S

PE
AK

ER
)

DC
(X
..
S)
:

X

DO
ES

SO

ME
TH

IN
G
—

 P
RI

MI
TI

VE

C
O
N
C
E
P
T

C
A
U
S
E
(
X
,
Y
)
:

H
A
P
P
E
N
(
X
)

*

H
A
P
P
E
N
(
Y
)

&

N
O
T
P
O
S
S
I
B
L
E
(
Y

&

N
O
T
(
X
)
)

&

B
E
F
O
R
E

(x

,Y
)

A
C
C
O
M
P
A
N
Y

(X

,Y
):

WI

TH
(T

RA
VE

L(
X)

,Y
))

Fi
gu

re

1

Mi
ll
er
's

De
co
mp
os
it
io
n

of

Br
in
g

2. M111 er' s_f«netJqnsj _Dtxnains and Ranges

A function is a many-one correspondence between two sets. The first set,

called the domain, provides the function with its arguments or inputs; the

second set, called the range, provides the function with possible values

or outputs. Every member of the domain must be associated by the function

with exactly one member of the range, but not every member of the range

need be associated with a member of the domain; a range member may be

associated with more than one domain member but need not be. If D and R

are the domain and range, respectively, of a function f, then we write

(1) fiO^R

to mean that f provides an association or mzpjiing from D into R. For a

function to be well-defined.its domain, its range, and its mapping must be

clearly specified in some way.

The intended mappings of Miller's functions are presumably supposed to be

given by the decomposition, and we will return to this question later. About

their domains and ranges, however, Miller says nothing, except to remark, as

we have noted, that by "SPEAKER" he means "speaker's location" and that cause

is meant to "be decomposed into possible sequences of events". It follows

presumably, that "SPEAKER" is a constant symbol denoting some member of the

set of locations and that "x" and "y" in the fourth line of the decomposition

are variables denoting members of the set of events. Beyond this we will have

to try to figure out what the domains and ranges of Miller's functions must

be, based on whatever information we can draw out of his decomposition. Some

78

I I

of our specific judgements will admit of alternate interpretations, given

the extremely limited character of the proposed lexicon fragment we are

examining, but we can still get a good idea, by proceeding in this way,

of the kinds of questions that must be asked and answered, if a functional

representation is to make sense.

Henceforth, we will consistently denote functions by symbols whose initial

letter is capitalized and sets by symbols that are capitalized throughout.

This will make it easier to keep track of which things are sets and which

things are functions. We have noted that V and My" in line 4 are intended

by Miller to denote events, so we can take the domain of the function Happen

to be the set of events, denoted here by the symbol "EVENTS", and we can take

the domain of Before to be EVENTS x EVENTS, that is, the set of ordered pairs

of events. Since an event is intrinsically something that happens, It would

seem to make little sense to distinguish between an event x and the event

that consists of the happening of x. If this is correct, then we have

to take the range of Happen to be some set other than EVENTS, and the set of

truth values or "booleans" seems to be the most reasonable candidate. This

gives us

Happen: EVENTS • BOOLEANS

as a description of the function Happen in the standard mathematical form

(1). Similarly, it seems unnatural to consider x happening before y to

be an event distinct from x and y and, again, BOOLEANS seems to be the most

reasonable alternative for the range of Before. This gives us

Before: EVENTS x EVENTS •> BOOLEANS

as a standard representation of the function Before.

79

The situation with Notpossible is a littlr more complicateJ. On the one

hand, the output of Notpossible is taken a an input to ore of the "&" functions,

along with the outputs of Happen and Before. Since these iatter outputs are

all booleans, it seems reasonable that the utput of Notpossible must also

be a boolean, because we would not expect a conjunction function to take

inputs from more than one set. We can conclude that th'i range of Notpossible

is BOOLEANS and that

Sj: BOOLEANS x BOOLEANS x BOOLEANS x B OLEANS *• BOOLEANS

is the standard description of the "&" function who,e symbol connects the four

main conjuncts of line 4.

The input of Notpossible has to be an eveit, however; Miller explicitly tells

us that he means to be talking about "po'.sjble i,oquences of events", as we

have seen, and, in any case, events see.i intuitively to be the most natural

sort of thing to be predicating nonpofsibility of. It follows that y &

Not (x) rmr.t be an event and, since vn expect "&" to denote a function that

takes only inputs from the same set, it follows further that the value of

Mot (x) must be an event, in order fur it to be conjoinable with y. This

then gives us

Not: EVENTS •*• EVENTS

&2: EVENTS x EVENTS EVENTS

Notpossible: EVENTS * BOOLEANS

as our standard description of the functions Not, Notpossible, and the &

that appears in the scope of Impossible, and

(2) Cause: EVENTS\ EVENTS • BOOLEANS

80

as a description of Cause itself. We see that the meaning of Miller's line 4

requires us to distinguish two very distinct conjunction functions, a fact

that is in no way discernable from its form alone.

Now that we have Cause figured out, we can attempt to perform a similar

analysis of line 1, in which the symbol "Cause" appears. Since the range

of Cause is BOOLEANS and since we want "&" functions to take inputs from

only one set, we have to conclude that the ranges of Come and Do are also

BOOLEANS. This immediately gives us

&3: BOOLEANS x BOOLEANS x BOOLEANS > BOOLEANS

as a description of the "&" function that appears in line 1. &3 and &. can

be reduced to a single binary "&" function, but only if we introduce extra

parentheses in lines 1 and 4 or, equivalently, add the further stipulation

that that & is associative. As Miller's decomposition stands, however, we

must distinguish &, and &- as separate functions and, in any case, we must

distinguish both of them from &«•

The symbols "x" and "y" in line 1 cannot denote events, as they do in

line 4, because events are not the sort, of thing that can either bring or

be brought, at least in the most natural interpretation of these words. In

line 1 these symbols presumably denote people or things, since people and

things are what bring other people and things, in the usual sense of "bring".

This gives us

Bring: (PEOPLE U THINGS) x (PEOPLE U THINGS) • BOOLEANS

Come: PEOPLE U THINGS •• BOOLEANS

as standard descriptions of Bring and Come or, taking "entity" to mean either

a person or a thing,

81

(3) Bring: ENTITIES x ENTITIES - BOOLEANS

(4) Come: ENTITIES > BOOLEANS

as equivalent descriptions of these functions.

This leaves us with only Do and Accompany still to figure out in line 1. We

have already seen that Cause takes two events as input, so the s that

appears as an input to Cause in line 1 must be an event. This gives us

Do: ENTITIES X EVENTS - BOOLEANS

as a description of the function Do. Since the output of Accompany in line

1 is an input to Cause, it follows from (2) that it must be an event. The

range of Accompany is thus EVENTS. The inputs of Accompany in line 1,

however, are the same y and x that serve as the inputs of Bring, albeit

in the opposite order, so they must both be entities, as indicated by (3).

This gives us

(5) Accompany: ENTITIES X ENTITIES - EVENTS

as a description of the function Accompany, completing our analysis of line 1.

We now have descriptions in the standard form (1) of Bring, Come, Do,

Cauce, Accompany, Happen, Notpossible, Not, Before, and our three versions

of &; only To, Travel, and With remain to be analyzed. Since the output of

To in line 2 H the same as that of Come, we know that the range of To must

be BOOLEANS because of (4). Since the output of With in line 5 is the same

as that of Accompany, we know that the range of With must be Events, because

of (5). We also know that "y" ^n ^ne 5 denotes an entity, again because

of (5), and that "SPEAKER" in line 2 denotes a location. This leaves us

with only the domain and range of Travel still to be determined.

C2

The domain of Travel has to be ENTITIES, because V in line 2 denotes both

the input of Travel and the input of Cowe, which (4) tells us must be an entity.

This conclusion is confirmed by line 5, because "x" in line 5 denotes both the

input of Travel and the first input of Accompany, which (5) tells us must

be an entity. There is little we can say about the range of Travel, however.

Whatever the output of Travel is, it has to serve both as an input, along

with a location, to To to produce a boolean and as an input, along with an

entity, to Accompany to produce an event. Lots of possibilities suggest

themselves and, in the absence of further evidence, no convincing conclusions

can be drawn. Under the circumstances, we might just as well settle,with

some intuitive plausibility, on activities as the sort of object that can serve

as the output of Travel, though perhaps events might make just as much sense.

This gives us

(6) To: ACTIVITIES x LOCATIONS - BOOLEANS

With: ACTIVITIES x ENTITIES •» EVENTS

Travel: ENTITIES -ACTIVITIES

as the standard descriptions of To, With, and Travel, subject to the proviso

that ACTIVITIES could just as well be replaced by EVENTS or somp other

set, as far as the evidence provided by this fragment is concerned.3

This gives us descriptions of the domains and ranges of all the functions

that Miller includes in his proposed semantic decomposition of bring,

derived from the detailed functional structure of the decomposition itself.

Our results leave many questions unanswered, not the least of which is that

of whether Miller's proposed decomposition actually provides the correct

account of the meaning of bring. It seems strange intuitively, for example,

to say that someone can do an event, but this is what Miller's decomposition

83

requires, as we have seen. Similarly, we have seen that, while both come

and accompany are verbs, the range of Come must be BOOLEANS but that of

Accompany must be EVENTS; otherwise the particular combination of functions

in line 1 will make no sense. Similarly, both to and with are prepositions,

but the range of To is BOOLEANS and that of With is EVENTS, for essentially

the same reason. These apparent discrepancies may reflect the genuine

meaning differences between the members of these pairs of words: Come

is something one simply does, while accompany is something one does to some-

one else; to relates one to a locatv , while with relates one to another

"entity". More likely, however, the discrepancies may be simply an artifact

resulting from the extremely limited nature of the fragment we have been

restricting ourselves to. A more extensive fragment might reveal that

verbs like come and accompany each have both boolean and event-valued

functions associated with them. Perhaps there is a universal functional

operator provided by general semantic theory that automatically provides

us, for each such event-valued function, with the corresponding boolean-

valued function, so we do not have to state the duality of such verbs in the

lexicons of particular languages. Lots of other possibilities suggest

themselves and we need not enumerate them here.

Clearly such questions can be resolved only by examining further data.

Jackendoff (1978), for example, uses syntactic evidence from English to

argue, in effect, that prepositions like on should be analyzed not as

mapping pairs of entities to booleans as suggested by the analysis of Miller

and Johnsor.-Laird (1976), but as mapping entities to locaticns. Wo would

thus get

rather than

On: ENTITIES - LOCATIONS

On: ENTITIES x ENTITIES -»• BOOLEANS

as the standard description of the function On. Similarly, in place of the

description

To: ACTIVITIES x LOCATIONS - BOOLEANS,

which we gave in (6) for To, Jackendoff's arguments suggest

To:- ENTITIES - PATHS

as the standard description.

The point is that there really is something to argue about here: these

are significant questions, and empirical evidence can be brought to bear

in trying to answer them. As we noted in Section 1, functions, unlike

semantic markers on their usual interpretation, are an independently well-

defined kind of mathematical object and thus provide us with a natural

handle with which to grasp onto the meanings we are using them to model.

The use of functional representation commits us to asking some wery specific

kinds of questions about lexical meanings, as we have tried to illustrate

here. To the extent that the answers to these questions provide insight

into the interesting facts of lexical meaning, they support the use of

functional representation as the correct way to deal with it. If attempts

to answer these questions yield no interesting insights or lead us astray

and create confusion, then functional representation itself will have to be

rejected. In either case, the questions we have begun asking here illustrate

85

the kinds of questions that have to be asked and answered in order for

functional representation to make sense at all. Without domains and ranges

there are no functions; with them there is at least something to discuss.

3. Sets, Functions, and Algebras

In the last section we derived a general picture of the semantic lexicon

that looks something like the following: The semantic lexicon consists of

a collection I of sets, including at least the sets listed in (7), and

a collection w of functions, including at least the functions listed in (8),

where the ranges of the members of w are members of E and the domains of

the members of w are Cartesian products of the members of E. The

(7) l: EVENTS

BOOLEANS

ENTITIES (= PEOPLE U THINGS)'

ACTIVITIES

LOCATIONS

PATHS (if Jackendoff is right)

(8) u: Happen: EVENTS •* BOOLEANS

Before: EVENTS x EVENTS + BOOLEANS

&x: BOOLEANS X BOOLEANS x BOOLEANS x BOOLEANS -> BOOLEANS

Not: EVENTS -+ EVENTS

&?: EVENTS x EVENTS - EVENTS

Notpossible: EVENTS -> BOOLEANS

Cause: EVENTS x EVENTS - BOOLEANS

&3: BOOLEANS*x BOOLEANS x BOOLEANS •> BOOLEANS

Bring: ENTITIES x ENTITIES -> BOOLEANS

86

Come: ENTITIES ~> BOOLEANS

Do: ENTITIES x EVENTS * BOOLEANS

Accompany: ENTITIES x ENTITIES •> EVENTS

To: ACTIVITIES x LOCATIONS - BOOLEANS

(or To: ENTITIES + PATHS, if Jackendoff is right)

With: ACTIVITIES x ENTITIES -> EVENTS

Travel: ENTITIES - ACTIVITIES

On:
either ENTITIES x ENTITIES •* BOOLEANS (Miller and Johnson-

Laird)

or ENTITIES •• LOCATIONS (Jackendoff)

members of I are presumably the semantic types of the language, that is,

(mental representations of) the sorts of objects the speaker/hearer

takes to exist. The members of w then constitute what the speaker/hearer

says or understands about those objects, in some general sense of those notions.

Such a dual collection of sets ar.d functions is exactly what is meant in

mathematics by an algebra (Birkhoff and Lipson, 1970). An algebra is an

ordered pair [E, w], where l is a collection of sets and w is a collection

of functions whose ranges are members of I and whose domains are Cartesian

products of the members of I. If E contains exactly one member, the algebra

is said to be homogenous., while if it contains two or more members, the

algebra is said to be heterogeneous. To the extent that the full semantic

lexicon can be obtained by simply adding more sets to the list in (7) and

more functions to the list in (8), it follows that the semantic lexicon is

itself an algebra and, in particular, a heterogeneous one, as we noted at

the end of Section 1.

87

4. Axioms, Polynomials, and Meaning Postulates

Classes of algebras are typically characterized by providing constraints

on the members of Z and w. Most commonly, constraints on the members of E

take the form of requiring some of them to contain distinguished members,

while constraints on the members of u take the form of statements, called

axioms, which require the equality of specified combinations of some of them .

The term "variety" is also used in the sense of our "class" and "law"

in the sense of our "axiom" (Barnes and Mack, 1975, p.7).

The most familiar class of algebras, for example, is probably that of the groups.

In these algebras, £ consists of a single set 3 that contains a distinguished

neutral member, denoted here by "Neut", and u> consists of two functions, a group

multip!icationTdenoted here by "Mult", and a o,roup inverse, denoted here by

"Inv", where Mult and Inv satisfy

(9) Mult: GxG-^G

Inv: G -• G

An algebra [{G}, {Mult, Inv}] that satisfies (9) qualifies as a group, if

there is a member Neut of G such that the following four axioms are satis-

fied for every member g, g-,, g«, 93> of G:

(10) 1. Mult (gr Mult(g2, g3)) = Mult(Mult(gr g2), g3)

2. Mult (g, Neut) = g

3. Mult (Neut, g) = g

4. Mult (g, Inv(g)) = Neut.

Axiom 1 says that the function Mult is associative, that is, that the ordor

in which Mult is performed is irrelevant to its results (though the order of

its inputs might still be relevant). Axioms 2 and 3 say that Neut is indeed

88

the neutral member of G in the sense that applying Mult to Neut and any group

member g in either possible order leaves g unchanged. Axiom 4 says that Inv

is in fact an inverse operation, in the sense that applying Inv to any group

member g and then applying Mult to g and that output always produces the neutral

element. The class of groups is fairly large, in an intuitive sense; it

includes the integers with Neut = 0, Mult = +, and Inv - 0-; the positive

rational numbers with Neut = 1 Mult = x, and Inv = IT; and many other

algebras.

Algebra descriptions like that expressed in (9) and (10) are generally

viewed in mathematics as characterizing abstract structures, in this case the

group structure; we can view them just as well, however, as characterizing

kinds of objects, in this case group members, and sets of kinds of functions,

in this case group multiplication and inverse (Hamilton and Zeldin, 1976b;

Cushing, 1978). An object is a group member if it is a member of a set on which

there are functions defined that satisfy the conditions we discussed in

connection with (9) and (10); a pair of functions constitute a group multi-

plication and inverse if their domains and ranges are as specified in (9)

and they satisfy the conditions involved in (10). Ihe kinds of objects and

functions are defined, in other words, in terms of their mutual interaction,

as specified in axioms and in statements of the form (1).

It seems, then, that we can take Miller's semantic decomposition of bring

as providing us with a proposed algebraic characterization of the kinds of

objects listed in (7) and the class of kinds of functions listed in (8).

What Miller is really giving us, in other words , is a description of a class

of algebras [Z, ü>] , where I is given by (7) and u is given by (8). The

axioms of these algebras are presumably the individual lines of his decom-

position, as listed in figure 1, with the colons interpreted as equality signs.
89

There is actually more going on here, however. One of the most basic

notions defined in connection with the notion of algebras is the class

of polynomial functions on an algebra. The polynomial functions on an algebra

[>:, m) are, essentially5 those functions whose outputs can always be obtained

by repeated application of the members of w. If we take the group that

consists of the integers with Mult = + and Inv = 0-, for example, as we

discussed in connection with (9) and (10), then the class of multiples of

group members provides examples of polynomial functions on that algebra; if

g is a group member, then the functions defined by

2g = g + g

3g = (g + g) + g

4g = «g + g) + g) + g

2g • 5(-g) = (g + g) +(((((-g) + (-g)J • (-g)) + (-g)) + (-g))

are all examples of polynomial functions on this group. Similarly, if we take

the group that consists of the positive rational numbers with Mult = x and

Inv = 1:, as we also discussed in connection with (9) and (10), then the

powers of group members provide examples of polynomial functions on that

algpbra; if g -*'s a group member, then the functions defined by

g2 = g x g

g3 = (g x g) x g

g1* - ((g x g) x g) x g

g? x (1 : g)c' = (g x g) x ({(((1 : g) x (1 -: g)) x (1 •: g)) x (1 : g)J x (1 :- g)

are all examples of polynomial functions on that group.

90

The point about polynomial functions is that their existence as functions

that can be legitimately applied to relevant members of I members is entailed by

the existence of the functions they are iterations of. The existence of the

function we have denoted by "3g" on our first group, for example, is assured

by the existence of the function + on that algebra; the existence of the

function g3 on our second group is assured, similarly, by the existence of

the function x on that algebra. Polynomial functions are essentially

abbreviations for repeated applications of more basic functions; they can thus

be eliminated altogether by replacing them explicitly with the repetitions

they abbreviate. It follows that if, for some algebra [E, m], some members

of w can be seen to be expressable as polynomial combinations of other members

of to, then they can be removed from to without essentially altering the algebra.

Only those functions that are independent of each other, in the sense that

none can be expressed as polynomial combinations of the others, need be in-

cluded in the to of a particular algebra. The existence of the polynomial

functions, as functions legitimately defined on I members, is then automatically

assured.

We can see now that Miller's semantic decomposition of bring provides us not

with the axioms of a class of algebras, but with definitions of a class of

polynomial functions on those algebras, namely, the functions that give the

meanings of brjn^, come, cause, and accompany. Accompany, for example, per-

forms a genuine mapping from pairs of entities to events, as indicated in (8)

by the formulation

Accompany: ENTITIES x ENTITIES > EVENTS,

91

but the particular mapping it performs happens to be the same, according to

Miller, as that performed by the indicated combination of With and Travel.

Come, similarly, performs a genuine mapping from entities to booleans, as

indicated in (8) by the formulation

Come: ENTITIES -> BOOLEANS,

but the particular mapping it performs could be accomplished just as well by

applying To to the output of Travel and to the constant location Speaker.

Bring could then be defined, itself as a polynomial function, entirely without

the use of Accompany and Come, by the formula

(11) Bring (x, y) = To(Travel(x), Speaker) & Do(x, s) &

Cause (s, With(Travel (y), x)),

and this could be expanded further, using the polynomial expansion of Cause

in Miller's line 4, to the formula

(12) Bring (x, y) = To(Travel(x), Speaker) & Do (x, s) &

(Happen(s) & Happen (With (Travel (y), x)) &

Notpossible (With (Travel(y),x) & Not(s)) &

Before(s, With(Travel(y),x)).

In terms of the mappings they say are performed by Bring from pairs of entities

to booleans, as indicated in (8) by

Bring: ENTITIES x ENTITIES •* BOOLEANS,

each of (11) and (12) is identical to Miller's line 1, even though neither (11)

nor(12) mentions Come or Accompany and (12) does not mention Cause. We

can thus get exactly the same function Bring, as a legitimate mapping from

entity pairs to booleans, whether or not we include Come, Accompany, or Cause

among the functions of our algebras.

92

It follows that we can get exactly the same set of functions by removing Bring,

Come, Cause, and Accompany from (8) and treating these functions as polynomial

functions defined by Miller's decomposition. This gives us a class of algebras

[I, wj in which (ignoring Jackendoff's arguments for the moment and sticking

strictly with Miller's fragment)

(13) I = {EVENTS, BOOLEANS, ENTITIES, ACTIVITIES, LOCATIONS}

and

(14) CD = {Happen, Before, &» Not, &«* Notpossible, &^, Do» To, With, Travel},

where the domains and ranges of the members of u in (14) are given in (8)

and where Bring, Come, Cause, and Accompany are defined as polynomial

functions on the algebra by Figure 1. Since no member of w in (14) can

be expressed in terms of any others as a polynomial function (according to the

information Miller provides), it makes sense to call the members of w the primitive

functions of the algebra.6 Note that Miller himself characterizes Do as

"primitive" as stated in Figure 1, but says nothing about the other members of

w in (14). Some of these other functions might be further decomposable as

polynomial functions in a full specification of the semantic lexicon, but it

is clear, as we have seen, that they are primitive with respect to this fragment.

Now that we have sorted out the primitive functions of Miller's class of

algebras, which must be explicitly specified as members of co, from the

polynomial functions, whose existence as mathematical mappings from domains

to ranges in the algebras is automatically guaranteed once the primitive functions

are given, a serious deficiency immediately becomes apparent. The formulation

in (13) gives us the kinds of objects our algebras are characterizing, (14)

gives us the primitive functions we are taking as characterizing them, and

Figure 1 gives us a set of polynomial functions that add nothing to that

93

characterization but can still be treated as if they were functions of the

class of algebras. What is totally missing now, however, is a set of axioms

for our class of algebras! Without axioms the members of u are entirely

arbitrary, except for the donain and range descriptions given in (8). We

know, for example, that Do maps an entity and an event, according to (8), to

a boolean and that Happen maps an event to a boolean, but we know nothing at

all about which entities and events are mapped to which booleans, that is,

about which mappings from entity-event pairs to booleans and from events to

booleans "Do" and "Happen", respectively, are supposed to denote. Without

a set of axioms to characterize our primitive functions, nothing about our

purported class of algebras is well-defined. In order, in other words, for

our proposed account of this fragment of the semantic lexicon as a class of

algebras even to tie such an account, we must supplement (13), (14) and Figure

1 with an appropriate set of axioms.

A natural candidate for one such axiom, for example, might be something like

(15) (Do (x,s) 3 Happen (s)) = True

where "3" denotes entailment, which would itself have to be characterized as

either a primitive or polynomial function from pairs of booleans to booleans,

that is,

3: BOOLEANS x BOOLEANS •+ BOOLEANS.

The formulation in (15) says that if some entity does some event,7 then that

event happens, a reasonable enough assertion to tne limited degree of empirical

adequacy that our tiny fragment allows. Similarly, we might include in our list

an axiom like

(16) (Notpossible (x) D Notj (Happen (x))) = True,

where Not, differs from Not in (8) in that it maps booleans to booleans

rather than events to events:

Not^ BOOLEANS -> BOOLEANS.

The assertion in (16) says that if an event is not possible, then it does

not happen, again a reasonable candidate for an axiom of our fragment.

Formulations like those in (15) and (16), we now observe, are exactly what have

been called "meaning postulates" in the literature.* Logicians have traditionally

distinguished between functions, which map inputs to outputs, and predicates,

which simply "hold" of arguments,'' so (15), (16) would normally be written

as

Do (x, s) D Happen (s)

and

Notpossible (x) D Not, (Happen (x)),

perhaps preceded by universal quantifiers and/or an assertion marker. We

can always treat predicates as boolean-valued functions, however, just as we

can replace sets with their characteristic functions, and to do so is useful,

as we have seen, because it makes possible a uniform algebraic treatment of

word meanings. It follows that, even if Miller is correct in his view that

word meanings can be decomposed into more primitive ones, he still needs

something like meaning postulates to characterize the primitive meanings

themselves.

95

This conclusion cannot be avoided, it should be stressed, by claiming that

the primitives are to be characterized by explicit algorithms or that they

are innate. To give an explicit algorithm for a function is simply to decom-

pose it further, so the functions it is decomposed into become new primitives,

themselves in need of axiomatic characterization (Hamilton and Zeldin, 1976b;

Cushing, 1978)!° Claiming that the primitives are innate (cr "cognitive universals,

independant of particular languages*', as, we have seen, Miller suggests) also

gets us nowhere, because our theory still owes us, in that case, an explicit

account of what it is that is innate. What is it that is innate when Do is

innate that is different from what is Innate when Happen 1s innate? Again,

axioms of some sort would seem to be in order.

We have concluded that Miller "still needs something like meaning postulates",

but, in fact, our result is much deeper than that. The "meaning postulates"

(15), (16) are really axioms of a very highly restricted form, and there is

no a priori reason to assume that axioms must necessarily be so limited.

Kinship terms, for example, seem particularly in need of a more complex

treatment: we might argue, quite plausibly, that words like husband, wife, etc.

express not relations» i.e., boolean-valued functions in our terms, as is gen-

erally assumed, but people-valued functions and, in particular,

Husband: WOMEN •> MEN

Wife: MEN •+ WOMEN.

If this is the case, then axioms like11

(17) Husband (Wife(m)) = m

96

would seem to provide a more appropriate analysis than meaning postulates

like (15), (16), which typically express true entailments between boolean-

valued functions. Our real conclusion, then, is not that Miller needs meaning

postulates, but that he need axioms, some of which may or may not be meaning

postulates. Note that this need for axioms falls right out of the mathematics

of functional representation, as Miller uses it: without axioms there 1s no

class of algebras and thus no polynomial functions, so the decompositions are

meaningless (Hamilton and Zeldin, 1976b; Gushing 1973). The specific forms

of the axioms and, in particular, whether any or all of them are meaning postulates

in the traditional sense is an empirical question, however, and the plausibility

of (17) suggests strongly that meaning postulates alone will not suffice.

These results give the study of lexical semantics a scientific status similar

to that of sentential syntax. A lexicon, like a grammar, is not simply a list,

in this case of words and meanings, but a highly structured mathematical

object, in this case an algebra. The really interesting problem of lexical

semantics thus becomes that of determining the universal and language-

specific constraints on lexical algebras, just as the basic problem of sen-

tential syntax is generally taken to be that of determining the empirically

motivated constraints on generative grammars. What sets do we have to recog-

nize in a lexical algebra for a human language? What combinations of sets

can exist as domains and ranges of lexical functions? What forms can axioms

take and what forms are ruled out? These and similar questions enable us to

raise lexical semantics from the level of mere taxonomy to that of a search

for scientific explanation.12

97

In view of these results, it is not surprising that some of the most recent

work on lexical semantics can be interpreted as implicitly attacking pre-

cisely this problem. Fodor, Fodor, and Garrett (1975) argue, for example,

that "meaning postulates mediate whatever entailment relations between

sentences turn upon their lexical content. That is, meaning postulates do

what definitions have been supposed to do . . ." (p. 526). In our terms,

as we have seen, this amounts to the claim, first, that all word meanings

represent boolean-valued functions and, second, that all axioms are of the

general form of which (15), (16) are instances. Jackendoff (1978), as

we have also seen, disputes the first of these claims, arguing that some

words, including prepositions like on, represent location-valued functions,

rather than boolean-valued ones. Cushing (1976) agrees, in principle, with

Jackendoff's claim but argues further that the lexicon must recognize not

only sets of people, things, and locations (which he call* "places"), but

also sets of times and possible worlds, not as special components of model-

theoretic interpretation, as in Kripke semantics or Montague grammar, but

as sets of the algebra just like any other!3 This last result dovetails

nicely with Chomsky's independent observation that "possible-worlds

semantics" seems to amount to nothing more than the lexical entry for the

word "logically possible" and words definable directly in terms of it

(personal communication).

These results are intriguing and suggest that the algebraic model should be

further investigated. Note that we have clearly not proven the correctness

of the model; we have looked at very little data and are thus in no position

to draw what is an essentially empirical conclusion. Our argument has been an

98

f

entirely theoretical one: if Miller uses functional representation for lexical

decomposition, then he also needs "meaning postulates", and the algebraic model

is a natural result. The model is attractive because it enables us to

approach the lexicons of natural languages in the same way that linguists

customarily approach their grammars, as we have pointed out, namely,

by looking for universal constraints on the relevant formal systems.lu

It naturally subsumes, furthermore, some of the more interesting questions

that lave arisen about the semantic lexicon in the recent literature,

as we have also pointed out. The real test, however, will, of course,

be to examine lots of actual data in light of the model and see what

interesting insights are revealed.

99

Footnotes

*Earlier formulations of the ideas in this paper were presented at

various times and places under a number of different titles (Cushing 1977

a, b, c). A more general account, in which an attempt is made to incor-

porate the ideas discussed here into a proposed formal model for the study

of cognition, is currently in preparation, based on the ideas in Cushing

(1977b) and Cushing and Hornstein (1978). I would like to thank Mark

Aronoff, Joan Bresnan, Dick Carter, Noam Chomsky, Morris Halle, Margaret

Hamilton, George Miller, Michael Zeldin, Saydean Zeldin, and the members

of the respective workshops for helpful discussion and encouragement.

1. Miller has confirmed this supposition (personal communication).

2. We will, however, interpret some of Jackendoff's (1973) results,

functionally, though he formulates them in terms of semantic markers.

Whatever Jackendoff's own intent might be, the evidence he adduces and

the conclusions he draws lend themselves naturally to the framework we

will be developing here.

3. In a recent proposal for "a recursive scheme for describing the

aspectual character of sentences" (p. 216), Steedman (1977) takes

activities to be a kind of event,without using a functional represen-

tation for lexical meaning, however. Again, it is well beyond our

present scope to inquire whether this assimilation of activities to

events is correct.

4. A theoretically much more significant deficiency in Miller's analysis

is created by the appearance of an "s" on the right-hand side of

line 1 but not on the left. If bring itself is a function of two variables,

it cannot be the same as a function of three variables. A set of general

principles for avoiding errors like these is provided by Hamilton and

Zeldin (1974, 1976a).

V
ffjMijM MI ym-WBLMm

101
mmmämm

5. The actual definition is somewhat more complicated, of course. A

concise formal definition of what he calls "polynomial operations"

is given by Montague (1974, p. 224) for the case of homogeneous

algebras, and extension to the heterogeneous case is straightforward.

The difference between "function" and "operation" varies from author to

author and, for our purposes, the two terms can be considered inter-

changeable. Polynomial functions constitute a special case of the

"control-map" functions discussed by Hamilton and Zeldin (1976a, b).

See also Cushing (1978).

Note that heterogeneous algebras were not introduced until 1970 and

thus were presumably not available to Montague. More significantly,

Montague's use of algebras is very different from our own. As Thomason

(1974, p. 48) points out, Montague was singularly uninterested in the

lexicon, using algebras to give a formal explication of the notion

"language" (1974, p. 225). Our concern here, however, is specifically

with the lexicon and with its internal structure, in particular; it is

the lexicon itself that we are suggesting is a heterogeneous algebra,

whatever may be the case with language as a whole.

6. Hamilton and Zeldin (1976b) and Cushing (1977b, 1978) call these

"""Imitive operations", but, as mentioned in note 5, the difference is

entirely terminological, for our present purposes.

7. As we noted earlier, "does some event" is an unnatural usage, but it is

motivated by Miller's fragment. Such discrepancies are precisely the

sort of thing that we would expect further evidence to enable us to

resolve.

8. See Fodor, Fodor, and Garrett (1975), Carnap (1956), Montague (1974),

and Katz (1977), to mention just a few works in which meaning postulates

are discussed.

9. Montague (1974, p. 305-306), for example, distinguishes between predicates

and operations in precisely this way. See notes 5 and 6 on "function"

vs. "operation".

102

10. One might argue that these algorithms decompose the semantic primitives

into "perceptual" primitives of some kind, obviating the need for specif-

ically semantic axioms. While it may be necessary, however, to relate

the semantic primitives at some point to more fundamental brain structures

(more on this in note 12), this need has nothing at all to do with

the present problem. To require that all word meanings be decomposed

directly into physiological structures, even assuming that this is

possible (see Fodor (1975, Chapter 1) for a good refutation of simple

reductionism of this kind), would be to give up the existence of a

specifically semantic level altogether, including, in particular, the

existence of semantic primitives, something Miller and other decom-

positionists certainly do not want to do. If something more abstract is

meant by "perceptual", however, than the physiological mechanisms involved

in perception, then it becomes very unclear what the difference is, in

our present context, between "perceptual" and "semantic", other than

terminology. Whether our abstract primitives are "semantic" or "per-

ceptual", we still need axioms in order for decompositions like Miller's

to make sense, and this is the point of our argument.

11. We assume, of course, for simplicity a strictly monogamous society in

which everyone is married. Further axioms would naturally be needed

to characterize these notions with full empirical adequacy. Note

that the semantic types MEN and WOMEN are not motivated by the

imformation in Miller's fragment, and we use them only for this example.

The right to assume a meaning function for any word ii the language

seems to be implicit in Miller's analysis and follows explicitly from

Fodor, Fodor, and Garrett's requirement "that formatives of the natural

language should correspond to formatives in the representational

system", once we adopt a functional representation; establishing the

existence of a semantic type, however, presumably requires some argument,

as Jackendoff's discussion suggests.

12. We have argued that the semantic lexicon is a heterogeneous algebra,

but have phrased our discussion of axioms and polynomial functions in

terms of classes of algebras. Any algebra description of the sort we

have discussed will always have infinitely many possible implementations

in terms of actual sets in Z and functions in w, in some cases these will

103

all be isomorphic with respect to the functions or the algebra but. in

some cases they will not. This may at first seem like a disturbing

indeterminacy, but, in fact, it is exactly what we should expect of

formal systems that are taken to model biological phenomena. If we

assume that a model for the semantic lexicon is a model for a part of

the mind and thus of the brain, then specifically semantic criteria can

carry us only so far in characterizing it. (Chomsky (1975) develops

a similar argument with respect to linguistic criteria and grammars.)

Suppose, for example, obviously contrary to fact, that semantic evidence

leads us to conclude that the entire semantic lexicon can be described

by the algebra description we gave for the groups. Suppose further, again

contrary to fact, that the class of algebras characterized by that

description contains exactly two members, which differ in how the set

and functions are actually implemented in the brain. While semantic

evidence would be unable to choose between these two algebras as the

actual brain representation, we could still try to decide between them on

non-semantic, e.g. physiological, grounds. It might be the case, for

example, that only one of the two algebras is efficiently representable

in the DNA code or in terms of neurocellular structures, in which case

the other could be reasonably ruled out, despite the fact that it sat-

isfies the relevant semantic criteria. (The DNA example was suggested by

Michael Zeldin (personal communication).) The point here is that seman-

tics, like the rest of linguistics, presumably deals with people and that

all sorts of evidence must be brought to bear in developing a complete

model of the human system of which the semantic lexicon is only a part.

(This is another difference between us and Montague, by the way. See

note 5 and Thoirason (1974).)

13. An account of how quantifiers can be dealt with in this framework is

also suggested by the discussion in Cushing (1976).

104

14. The notion that different formal systems underlie sentential syntax

and lexical semantics, i.e., grammars vs. algebras, is plausible on

psychological grounds "in that there is evidence . . . that the

process of lexicalization is distinct from grammar acquisition"

(Anderson, 1977, p. 133). Naturally, we would expect the two systems

to interact, however, as Oackendoff's arguments suggest.

105

References

Anderson, John R. (1977) "Induction of Augmented Transition Networks",
Cognitive Science, 1, 125-157.

Barnes, Donald W. and John M. Mack (1975) An Algebraic Introduction to
Mathematical Logic, Springer-Verlag, New York.•

Birkhoff, Garrett and John D. Lipson (1970) "Heterogeneous Algebras,"
Journal of Combinatorial Theory, 8, 115-133.

Carnap, Rudolf (1956) "Meaning Postulates", in Meaning and Necessity,
University of Chicago Press, Chicago Illinois.

Chomsky, Noam (1975) Reflections on Language, Pantheon Books, Random
House, New York.

Cushing, Steven (1976) The Formal Semantics of Quantification, UCLA
Doctoral dissertation, available from the Indiana University
Linguistics Club, Bloomington, Indiana.

Cushing, Steven (1977a) "Lexical Decomposition and Lexical Algebra",
presented to the MIT Workshop on Language and Cognition, February
1977, Cambridge, Massachusetts.

Cushing, Steven (1977b) "Lexical Functions and Lexical Algebra: A
Software Model for the Semantic Lexicon", presented to the MIT
Workshop on Lexical Representation, December 1977, Cambridge,
Massachusetts.

Cushing, Steven (1977c) "An Algebraic Approach to Lexical Meaning",
presented at the Annual Meeting, Linguistic Society of America,
December 1977, Chicago, Illinois.

Cushing, Steven (1978) "Algebraic Specification of Data Types in
Higher Order Software (HOS)", to appear in the Proceedings, Eleventh
Annual Hawaii International Conference on System Sciences, January
1978, HonoTulu, Hawaii.

Cushing, Steven and Norbert Hornstein (1978) "Software Systems, Language,
and Empirical Constraints", to appear in The Behavioral and Brain
Sciences, 1,1.

Fodor, Jerry A. (1975) The Language of Thought, C/owell, New York.

Fodor, J. D., J.A. Fodor, and M.F. Garrett (1975) "The Psychological
Unreality of Semantic Representations," Unsujs^ic _I^n_quiry, 6
515-531.

107

Hamilton, Margaret and Saydean Zeldin (1974) "Higher Order Software
Techniques Applied to A Space Shuttle Prototype Program", in
B. Robinet (ed.), Prog ramming Symposium, Proceedinjs, Collogue sur
1^ Pro^am]MtLOn, Paris, April 9-11, 1974, Vol." 19 öf G. Goos
and J. Hartman is (eds.), Lecture Notes in. Computer Science,
Springer-Verlag, Berlin.

Hamilton, Margaret and Saydean Zeldin (1976a) "Higher Order Software--
A Methodology for Defining Software", IEEE Transactions on Software
Engineering, SE-2, 9-32.

Hamilton, Margaret and Saydean Zeldin (1976b) "AXES Syntax Description",
TR-4, Higher Order Software, Inc., Cambridge, Massachusetts.

Jackendoff, Ray (1978) "Grammar As Evidence for Conceptual Structure,"
to appear in M. Halle, J. Bresnan, and G. A. Miller (eds.),
Linguistic Theory and Psychological Reality, MIT Press, Cambridge,
Massachusetts.

Katz, Jerrold J. (1972) Semantic Theory, Harper and Row, New York.

Katz, Jerrold J. (1977) "The Real Status of Semantic Representations,"
Linguistic Inquiry, 8, 559-584.

Katz, Jerrold, J. and Jerry A. Fodor (1963) "The Structure of a Semantic
Theory," Language, 39, 170-210.

Miller, George A. (1976) "Semantic Relations Among Words: I," presented
at the MIT Convocation on Communications, March 1976, Cambridge,
Massachusetts.

Miller, George A. and Philip N. Johnson-Laird, Language and Perception,
Harvard University Press, Cambridge, Massachusetts.

Montague, Richard (1974) Formal Philosophy, Yale University Press, New
Haven.

Steedman, M.J. (1977) "Verbs, Time, and Modality," Cognitive Science,
1, 216-234.

Thomason, Richmond (1974) "Introduction" to Montague (1974).

108

I I

I

Part 7

A NOTE ON ARROWS ANO CONTROL STRUCTURES,
CATEGORY THEORY AND HOS

S. Cushing

109

A NOTE ON ARROWS AND CONTROL STRUCTURES:
CATEGORY THEORY AND IIOS

it

"Nature is a structure of evolving
processes. The reality is the pro-
cess . *

- A. N. Whitehead

In this note we briefly review the "arrow-language" (Arbib and Manes, 1975) of

category theory and its use in defining some basic notions of set theory. We

then use these results to shed new light on some basic notions of Higher Order

Software (HOS) (Hamilton and Zeldin, 1976b).

1• Arrows and Commutative Diagrams

The mathematical theory of categories is an attempt to develop a universal frame-

work through which to unite the many seemingly different branches of mathematics.

In the words of Arbib and Manes (1975),

Category theory is the mathematician's attempt to lay bare some of the
underlying principles common to diverse fields in the mathematical
sciences. It has become, as well, an area of pure mathematics in
its own right. Briefly, a category is a domain of mathematical dis-
course characterized in a very general way, and category theory is
thus an array of tools for stating results which can be used across
a wide mathematical spectrum (p. xi).

Underlying category theory is the idea that many of the definitions of fundamental

mathematical notions can be reformulated in terms of mappings from one set to

another, rather than in terms of the elements that sets contain. As Arbib and

Manes put it,

the usual approach to set theory starts with elements and builds all
its notions in terms of these...we introduce a different approach to
set theory, which builds all its notions in terms of arrows, the sym-
bols f: A+B which represent a function as a unitary whole rather than
in element-by-element terms...this 'arrow-language' of category theory
allows us to specify, once and for all, concepts which play an important
role in many different areas of mathematics even though their element-
by-element definitions are drastically different in different domains
of discourse (p. 1).

ryt". "" *• mmmmmgqmqmM

no

In this section, we review this arrow language, basing our discussion fairly

closely on that of Arbib and Manes, and in the next section we apply it to HOS.

A mapping (function), in this arrow language, is represented by an arrow which

points from (the symbol denoting) the domain of the mapping to its range (or co-

domain). If a mapping f maps set A to set B, it is thus denoted by the symbol

f
A + B.

Composition of mappings, i.e., application of one mapping after another has been

applied, is denoted by a succession of such arrows. If f maps A to B and g

maps B to C, we denote this fact by the symbol

f g
A •*• B -> C.

If the composition of two mappings has the same effect as a single third mapping,

we can denote this fact by a single diagram in which the arrows for all three

mappings appear, as follows:

/
-B

(1)

Such a diagram is called a commutative diagram; it is said tö commute, because

both paths from A to C have the same effect, i.e., any element of A maps to

the same element of C whether we apply h alone or first f and then g. In general,

commutativity is taken to hold over two or more paths only if at least one

contains at least two arrows, such as the f, g path in (1). The diagram

A —-B

t\V (2)

for example, tells us that the f, g path-, the f, h path; and the k path all pro-

duce the same result, since the first two contain two arrows, but it tells us

111

. •

nothing about the relation between the g path and the h path, since each of these

contains only one arrow.

This arrow language can be used to provide revealing reformulations of the de-

finitions of many basic mathematical notions, as Arbib and Manes show. Of parti-

cular interest to us here is the definition they develop for the Cartesian

product of two sets, which they call the product. Traditionally, the (Cartesian)

product of two sets is defined as the set of all ordered pairs whose first

element is in the first set and whose second is in the second. If A and B are

two sets, their product A x B is thus given by

AxB= {(a,b)|a e A and b e B}.

Since this definition is formulated in terms of the elements of A and B, the

question immediately arises, in our present context, whether it can be reformu-

lated entirely in terms of mappings instead.

The first thing we notice in this connection is that there are two very special

mappings associated with A x B, as follows:

IT,: A x B •*• A, (a,b) v> a

TT?: A x B -*• B, (a,b) H- b

The straight arrows indicate the domain-range relationships of the two mappings,

while the barred arrows indicate the effect of the mappings on individual domain

elements. The effect of IT, , in other words, is to map each ordered pair to Its

first component, while the effect of IT« is to map each ordered pair to its second

component. Arbib and Manes call these mappings projections, by analogy with

analytic geometry, in which IT, would amount to projection onto the abscissa and

Tu would amount to projection onto the ordinate.

Given any set C end any two mappings

Pyl C -> A

P2: C -> B,

112

we can clearly reverse, so to speak, the effects of TT, and TT« by defining a new

mapping p as follows:

p: C + AxB

ct* (p^c), p2(c)).

In other words, just as ir, and n« take (a,b) to a and b, respectively, so p takes

a and b to (a,b), where a = p,(c) and b - p2(c) for some c. What this means,

however, is that the diagram

AXB

(3)

commutes, i.e., that any indicated p<th from one particular set to another has

the same mapping effect as aiy other. As Arbib and Manes point out, there is,

for any given A, B, C, IT,, TT2, p,, p„, only one p that will work in (3). Given

this fact we can turn (3) into a definition of product, as follows:

A product of two sets A j and A 7 is a set A equipped with
two maps it i : A —*A i and JTJ :A—*-AI (called projections) with the pro-
perty that, gi\ sn any other set C with pair of maps px : C—• A x and
Pi : C~+A 2, there exists a unique map p such that

A^ _ (4)

Arbib and Manes show that, if there are two distinct products for two sets, then

they must be isomorphic in the sense that one is just a relabelling of the ele-

ments of the other. For example,

{(b,a)|b e B and a e A}

satisfies the definition of product just as well as

{(a,b)|a e A and b e B}

does. These two sets differ only in the way we are writing their elements, however,

11

in that each element of one can be obtained by reversing, i.e., relabelling,

the components of the corresponding member of the.other. It follows that we can

talk about the product of two sets, ignoring differences between sets that are

isomorphic in this sense.

This brings us to the notion of duality. Given a notion that has been defined In

terms of commutative diagrams, we get the dual of that notion by reversing the

directions of all the arrows in the diagram. It turns out, as Arbib and Manes

discuss, that all theorems remain true in category theory when we replace e^/ery

notion in the theorem with its dual. If P is a property, such as being the product

of two sets, that has been defined in terms of commutative diagrams, then the

property dual to P is called co-P. Proving a theorem of the form "All VTs have

property P," thus automatically provides a proof"of a dual theorem of the form

"All co-W's have property co-P." This leads us to ask the obvious question:

Given our definition of the product of two sets, what is the co-product of two

sets? In other words, what is the dual of the notion product?

Given the definition of "dual," we know that the co-product of two sets, whatever

it is, is defined in exactly the same way as the product, except that the arrows

in the relevant commutative diagram, i.e., (4), are reversed. This gives us the

following definition:
A coproduct of two sets A j and A 2 is a set A equipped

with two maps inn :At —>A and in2 :Ai—>A (called injections) with the
property that, given any other set C with a pair of maps q\ : A i —• C and
<?a '• A2 —* C, there exists a unique mapq such that /r\

The definition tells us what a co-product is, but it doesn't tell us whether,

for any two sets at all, any such thing exists. Whereas, for the product, we

knew from the traditional definition what we were talking about and that it

exists, and we derived the arrow definition from that, all we know from the arrow

definition of co-product is that it satisfies (5), if it exists at all. By

duality we know that all co-products of two sets are isomorphic, so we can talk

Hi

about .the co-product of two sets, but we still do not know what the co-product of

two sets looks like, aside from the role that it plays in (5).

As Arbib and Manes show, the co-product of two sets amounts to none other than

their disjoint union. If two sets are disjoint, then their disjoint union is

simply (isomorphic to) their union, but if they are not disjoint, then we first

have to label their elements and then form the union in order to get their

disjoint union. One way of labelling elements is to associate a different

integer with each set, so, given two sets A, and Apt we form the labelled sets

A1 x {1} = {(a1,l)|a] e A,} (6)

A2 x {2} = |(a2,2)|a2 e A2>. (7)

If an element a of A, is also an element of A2, i.e., if A, and A2 are not dis-

joint in the first place, then a appears as (a,l) in (6) and as (a,2) in (7),

so (6) and (7) clearly are disjoint. If we then let A, + A2 be the union of

(6) and (7), i.e.,

A, + A2 = (A1 x {1})U (A2 x {2}),

then the resulting disjoint union of A, and A2 clearly satisfies (5), with

A = A, + A2 and

ink: Ak -> A1 + A2, a » (a,k), k - 1,2,

because then there is a unique q, namely,

q: A1 + A2 •+ C, (ak>k) H- qk(aR), k=l,2,

that works in (5). We see that the Cartesian product and the disjoint union

of two sets are category-theoretic duals, in that their arrow-language definitions

differ only in the directions of corresponding arrows. Clearly this is an In-

timate relationship that we would never have been able to guess at from the

traditional definitions of these notions in terms of the elements of sets.

115

•

2. Systems and Control Maps

Higher Order Software (HOS) is a formal methodology for specifying computer-

based systems in terms that are entirely independent of their implementation

in hardware or resident software (Hamilton and Zeldin, 1976b). A system is said

to be reliable if it produces the correct outputs from relevant inputs In the

way it is supposed to. Formally, HOS is based on six axioms which guarantee

the absence of interface errors among the components, or modules, making up a

system and so help to ensure reliability in this sense (Hamilton and Zeldin,

1974).

Any system can be specified in HOS in terms of data types, functions, and

control structures (Hamilton and Zeldin, 1976a). Data types are the kirtds of

(objects that play a role as inputs or outputs in a system and its component

subsystems; functions are the mappings among data types that get performed

on these objects; and control structures are the relations that determine how

the various functions in a system interact and combine to achieve the system's

overall effect. In this note we will focus primarily on control structures,

with only passing attention, as needed, to functions and data types.

if

Given a system that performs a particular function f, it may be the case that

the effect of f is really achieved by two (or more) other functions acting

together. From the engineer's point of view, we might want to design our sys-

tem to perform f by performing two other functions instead. If f is a function

mapping input values x to output values y, and if g and h are functions which

together produce exactly the same mapping from x to y as f, then we can express

this relation in a tree diagram like the following:

y • f(x)

/\
g h

116

Diagram (8) is an incomplete example öf what in HOS is called a control map.

Control maps specify the control relationships by means of which higher-level

functions get performed through the action of functions at lower levels in the

tree. To get a full control map, we v/ould have to complete (8) by specifying

in detail the relationships that hold among the inputs and outputs of f, g, and h,

and, if we want, by further developing the tree by also expanding g or h into

lower-level functions. Each such way of completing (8) is called a control

structure and represents a unique relationship of data and control flow among

the functions that make up the system. Note the intimate relationship Involved

here between data flow and control flow: the flow of control is specified

in (8) by specifying the flow of data among various functions In the tree.

Data flow and control flow can thus be viewed as "duals," since we cannot have

one without the other and, in fact, we get one precisely by specifying the

other. This is a very different sense of "dual" from the category-theoretic

sense described in Section 1, however (see Cushing, 1977 for more discussion).

HOS recognizes three control structures as primitive, since any other control

structure can be expressed in terms of those three. The composition primitive

control structure is illustrated as follows:

y =.f(x)

(3)

w"• h(x)

In this control structure, one lower function takes the input of the higher

function and produces an intermediate output which the other lower function

takes as input to produce the output of the higher function. In (9), in other

words, x gets mapped to y by f through first being mapped to w by h and then

having w be mapped to y by g.

The set-partition primitive control structure is illustrated as follows:

j

y = f(x)

(10)

117

In this control structure, the input values are divided into two distinct sets,

according to whether or not they satisfy some predicate. Each lower function

then maps one of these classes to output values independently of the other lower

function. In (10)» in other words, x is mapped to y by f through first deter-

mining whether x has the property P: if x has P, then it gets mapped to y by

h, but if it does not have P, then it gets mapped to y by g. The left super-

scripts serve to underscore the fact that two distinct varieties of inputs and

the outputs resulting from them are being distinguished in the tree.

The class-partition primitive control structure is illustrated as follows:

y * f(x)

(11)

Yj = 9(xr) y2 • h(x2)

In this control structure, the input values themselves are seen as being made

up of smaller units, e.g., vectors and their components, and the units are mapped

one by one and independently by the lower functions to the units that make up

the output values. In (11), for example, x values are seen as each consisting

of both an x, value and an x? value, in that order, and these are mapped to y,

and y„, respectively, which make up y, by g and h, respectively. As in (10),

but in contrast to (9), g and h work entirely independently of each other in

(11); the difference between (10) and (11) is in the relationship borne by g

and h to f in the two cases.

3• Control Maps and Commutative Diagrams

In the last section we outlined the basic HOS notions of control map and primitive

control structure in more or less traditional mathematical terms, such as "in-

puts," "outputs," and the like. In this section, we ask: What happens if we

try to reformulate these definitions in terms of the arrow language we dis-

cussed in Section 1? Answering this question amounts, first, to figuring out

what basic mappings are involved in each primitive control structure and, then,

expressing the relations among these mappings in terms of commutative diagrams.

118

The composition primitive control structure is easy, because it really amounts

to the same thing as category-theoretic composition. This primitive control

structure looks essentially like the following:

y • f(x)

(12)

y = g(w) w = h(x)

Each of the variables "x," wy," "w," takes on values belonging to some set

(structured algebraically as a data type, c.f. Cushing, 1978). Let the V

set be A, the V set be B, and the "y" set be C. What (12) tells us, first

is that there are three distinct mappings Involved in this primitive control

structure, namely, f mapping A to C, g mapping B to C, and h mapping A to B.

In arrow terms, we can write these mappings in the form

f
A-> C

9
B-• C

h
A * B

The control map also tells us, however, and this is key, that the joint effect

of h followed by g has exactly the same effect as f alone; that is, if we want

to perform f, we can do it just as well by forgetting about f and doing h and

then g, instead. In arrow terms, this tells us that the diagram

h
A >B

\^ I 9 (13)
f \^ *

C

is commutative. Diagram (13), however, is exactly the same as (1), except for

the labelling of the mappings. Diagram (13) describes the situation in which

f can be eprformed by performing h and then g, instead, whereas (1) describes

the situation in which h can be performed by performing f and then g, instead.

119

It follows that we can rewrite (1) as the HOS control map

y = h(x)

0«)
y s g(w) w - f(x)

switching, in effect, the names of f and h. Clearly, for our present purposes,
names are unimportant; what matters is the equivalence, in terms of the relations
among the relevant mappings described In the respective diagrams, of (1) ard (14).
Diagram (12) is the same as (13), and (14) is the same as (1); in other words,
the diagrams

y = f(x)

c=^>
y = g(w) w = h(x)

(15)

are equivalent, as indicated, the first expressed in HOS terms, while the second
is expressed in category-theoretic terms.

The class-partition primitive control structure is not so easy; its arrow-language
interpretation is not obvious at all. Class-partition looks essentially like
the following:

y = f(x)

(16)

y} = g^) y2
a h(x2)

Now what does (16) tell us about the mappings f,g, and h? We know that f can be
performed by performing g and h instead—this is what every control map tells
us: higher-level functions can be performed by performing the immediately lower

120

ones instead—but this tells us nothing about how to write this fact in terms
of arrows, since g and h are clearly not related by composition. Let us put this
fact aside, temporarily, and see what else we can learn from (16).

We know from our discussion in Section 2 that "x" in (16) takes on values that
are complex relative to the values of "x," and "x«"; x, and x2 are the units,
in order, that make up_ x. The diagram thus presupposes two mappings— call them
d, and d«, respectively—which map x values to their respective x, and x2 component
values. The values of "y," furthermore, are also complex, relative to the values
of "yj" and "y-": y^ and y2 are the units that make up y. Two other unshown
mappings are thus also presupposed by (16), a mapping—call it T?,—that maps y
values to their y, values and a mapping—call it IT2—that maps y values to their

y« values. If we again let A be the set of x values and C the set of y values—
we do not need B, because there are no w values this time—and we now let A, and
A« be the sets of x, and x« values, respectively, and C, and C? the sets of y*
and y« values, respectively, then we see that (16) describes a situation in-
volving the following seven mappings:

f x dl
A -• C \ A >A1

shown explicitly .
9 r (in the control 2 / implicit in the

Al •* Ll /map A -> A0 f notion "class- '2

hi ir,
A2 * C2 / C - C

partition"

w2

1

C, ?

rather than just the three shown explicitly in the control map.

Now what does (16) tell us about the relationships among all these mappings?
We have observed, and have temporarily put aside the fact, that f in (16) is per-
formed by performing both g and h. This fact, however, is precisely what we
need to answer our question about the seven mappings. If we put the four extra

121

mappings explicitly into the control map (16), we end up with a diagram like the
following:

*^jk)

y, • 9(x,)

(17)

y2
s n(x2)

The two straight lines are from the original control pap (16); the two dashed
lines denote d, and d« from x to x, and x?; the dotted lines denote IT, and n?
from y to y^ and y?; the three wavy lines denote the original mappings f, g, and
h, from x to y, from x? to y^, and from x2 to y^. These extra lines just make
explicit what is implicit in the notion "class-partition" in (16). Note the
directions of the arrows, however. There are only four ways» in (16), that we
can complete full paths consisting of more than one arrow, the minimum number
of arrows that we need to compare paths in a commutative diagram, as we saw in
connection with (2). In (17), the four relevant paths are as follows:

f "i
(a) x'wvww+ y * yi

(b) X • X,A^VAA-»- y1

f *2 (c) x~*~~-* /•••••»+ y«

d2 h
(d) x • x9~*^> y0

(18)

m

What this tells us is that we can get from x to y,, either by first performing

f and then iu, or by first performing d, and then g, and that we can get from

x to y2» either by first performing f and then u^ or by first performing dp

and then h. In other words, paths (a) and (b) in (18) perform exactly the same

mappings from x values to y, values, and paths (c) and (d) perform exactly the

same mappings from x values to yp values.

These equivalences give us the following commutative diagram, as an account of

the relationships among the mappings that are explicitly and implicitly involved

in (16):

(19)

To say that g and h are related to f by the class-partition primitive control

structure is thus to say, at least in part, that there are mappings IT, , ir„, d,,

dp such that the diagram in (19) commutes.

Now what about the set-partition primitive control structure? Set-partition

looks essentially like the following:

]y = g(]x)

y - f(x)

(20)

2y • h(2x)

123

Again, we have to ask what (20) tells us about the mappings f, g, h, and, again,

we have to observe that these are not the only mappings involved. The values of
M1
X," '

,2
X," "V" "V in (20) are not components of the values of "x" and "y%

as are "x^" "x^" Myr" "y/ in (16). The values of K1X,M ,,2
XV' "V" "V

in (20) are themselves whole values of x; the point about these values in set
1 2

partition is that " x," " x,M while themselves values of Mx" in the domain, are

* also values of V in one of the sets that partitions the domain. In other

words, if we let A, be the set of Mxw values that satisfy M-»P(x),M A« the set of

"x" values that satisfy MP(x),M and A, again, the set of "xM values, altogether,

then we have to distinguish between an V value a as a member of A and a as a

* member of A, or A„, even though the same a is involved in both cases. If we let

C, again, be the set of MyH values; C, the set of "yM values that come from "x"

values in A,; and C2 the set of "y" values that come from "x" values in A2, then,

similarly, we have to distinguish between a "y" value c as a member of C and the
1 same "yM value c as a member of C, or C«. (Note that, while A, and A« must be

mutually exclusive and exhaustive, C, and C« do not, since this will depend on

the effects of f, g, and h.)

* It follows that, as with class partition, there are more mappings involved im-

plicitly in set partition than are shown explicitly in (20). Given the sets

A, A,, A«, C, C,, C2, we have to distinguish, again, four mappings other than

f, g, and h: a mapping i, from A, to A that takes each member of A, to itself

as a member of A; a mapping i« from A2 to A that takes each member of A« to

itself as a member of A; a mapping j, that takes each member of C, to itself

as a member of C; and a mapping j0 that takes each member of Co to itself as

a member of C. This gives us the following seven mappings:

f
A >C

9
' A1~>C1

h
A2 >C2

* u I Aj—>A

A2-^A

124

c,—»c

c2—>c

as the mappings really involved in (20).

Again, we can determine the relationships among these mappings by putting them
all explicitly into the control map, in this case (20). This c>ives a diagram
that looks like the following:

y+zM*)

<vXvw«U
2y - h(2x)

(21)

Again, the straight lines are from the original control map, and the wavy lines
denote the original mappings f, g, and h; the dotted lines, this time, denote
the j mappings, and the dashed lines denote the 1 functions. If we note the
directions of the arrows, we again see that there are only four ways of com-
pleting full paths of more than one arrow, as follows:

1 1 f
—-• x

1 9 1

u

'1

2V
n 2 x wv-^^1**** * * y*

125

These relationships then give us the following commutative diagram, as an account

of the relationships among the mappings involved in set partition:

(22)

To say 5hat g and h are related to f by the set-partition primitive control

structure is to say, at least in part, that there are mappings i,, i«, j,» j»

such that the diagram in (19) commutes.

» • 4- Primitive Control Structures and the Primacy of Process

Diagrams (19) and (22) are interesting in their own right, because we said we

wanted to determine how the definitions of the primitive control structures

could be reformulated in arrow-language terms, and (19) and (22), along with the

straightforward (15), provide the answer to this question. If we examine these

two diagrams more closely, however, some further interesting facts emerge con-

cerning the basic properties of and relations between the primitive control

structures they represent.

If we ignore the labels for the various parts of (19) and (22), (clearly what

we call things is not of fundamental importance), and compare the structures

of the diagrams themselves (see (23)), a very surprising fact emerges.

Clearly, (19) and (22) are identical, except for the fact that the -trrows are

reversed! Since f points in opposite directions in the two cases, we might

be led to suspect that either diagram could be transformed into the other by

126

m—iBa —*~H

range of f
domain of f

! i h

v

domain of f

[19]

range of f

[22]

(23)

turning it upside down, but this is easily seen not to work. The difference

between (19) and (22) is deeper tnan just the orientation of the diagrams on

the page. In (19) all arrows other than f itself that touch either the domain

or range of f point away from them, while all such arrows in (22) point toward

f-hem. The difference between the two diagrams is really solely a matter of the

directions in which corresponding arrows point.

It follows that set-partition and class-partition are category-theoretic duals,

as we defined this notion in Section 1, ? fact that we would never have been

able to guess at from (10) and (11) alons. Given any theorem about either

set-partitions or class-partitions that is formulated entirely in terms of arrow-

defined notions, we can automatically obtain a theorem about the other primitive

control structure by simply replacing each arrow-defined notion by its category-

theoretic dual. No further proof of a theorem obtained in this way would be

necessary.

So much for comparing (19) and (22) themselves. What happens if v/e compare these

two commutative diagrams to those we examined in Section 1. If we again ignore

labels, which are entirely arbitrary, as long as our usage of them is self-

consistent, then another interesting fact emerges:

127

range of f

domain of f

[19]

range of p

domain of p
[4]

(24)

domain of f

range of f

[22]

in,

domain of p

v
range of p

(5j

(25)

Diagram (19) is identical to (4) and diagram (22) is identical to (5), except

that, in each case, each basic mapping in (4) or (5) is further broken up into

two submappings related by composition. The only difference between (19) and

(4), in other words, is that the arrow that represents p1 in (4) is broken up

into two composed arrows in (19), namely, g and d], and the arrow that represents

128
M »»--

Po in W is broken up into the two composed arrows h and d„ in (19); (22),

similarly, differs from (5) only in that q, in (4) is written as g followed by

jj in (22), and q0 in (4) is written as h followed by J2 in (22).

This difference is easy to explain in that Arbib and Manes are interested solely

in defining the product and co-product A in (4) and (5) and are not interested

in any properties C might have, other than its being a set, whereas, in HOS we

want to partition both the domains and ranges of our functions, so that we

can guarantee the traceability of data flow. The range in set-partition cannot

always be partitioned exhaustively and in a mutually exclusive way, as can the

domain and both the domain and range in class partition, but we still want to

keep track of which outputs come from which partition member of the domain, as

indicated in left superscripts on the variables in (10) and (20). Clearly, the

effect of j, and j« in (22) (see (25)) is precisely to achieve this effect.

We see that the commutative diagrams that are implied by the class-partition

and set-partition of functions in HOS are essentially the same as the diagrams

that define the product and co-product of sets, respectively, in category theory.

The single minor difference between the two sets of commutative diagrams reflects

a slight difference in goals that is easy to understand and explain. There is

more to this difference in goals than might be apparent from how it shows up in

the diagrams, however. A deeper point emerges when we step back from the similarity

of the commutative diagrams and examine the use to which the diagrams are being

put in each case.

Arbib and Manes use (4) and (5) to define a set that is related to two given

sets through the relation of being their product or co-product: a set A is the

product or co-product of sets A1 and A2 if there is a unique mapping p or q,

respectively, that makes (4) or (5), respectively, commute. The primitive

control structures associated with (19) and (22), however, are used iniHOS to

define a function (mapping) that is related to two given functions through the

relations of set-partition or class-partition: f is related to g and h by class-

partition or set-partition if f is the unique mapping that makes (19) or (22),

respectively, commute; clearly names do not matter, in this context, and we could

just as well call f the product or co-product of g and h.

09

I

This difference between the category-theoretic use of (4) and (5) and the HOS

use of (19) and (22) looks very much, it seems, like the difference between

set-theory and category theory that Arbib and Manes outline in the passages

cited in Section 1. Whereas "the usual approach to set theory" focuses on sets

and the elements which make them up, category theory treats sets themselves

as unitary wholes—elements, so to speak—and focuses on the mappings between

them. Similarly, whereas Arbib and Manes use (4) and (5) to define sets, HOS

uses the relations expressed in (19) and (22) to define mappings. In this sense,

then, what HOS seems to do is to take the basic idea of category theory—i.e.,

shifting emphasis from sets of elements to mappings—and carry it one step further.

Its emphasis on the functions that systems perform seems to be one of the key

features that distinguishes HOS from other systems theories, such as that of

Mesarovic and Takahara (1975). Mesarovic and Takahara define a system as a rela-

tion, i.e., a particular kind of set; "t..to enable a system or its restrictions,

which are both in general relations, to be represented as functions...new auxiliary

objects, termed state objects, had to be introduced" (p. 10). This situation

seems to bother Mesarovic and Takahara somewhat, and they make some attempt

to justify it, arguing that it is necessary because of the nature of mathe-

matics.

A system is defined as a set (of a particular kind, i.e., a rela-
tion). It stands for the collection of all appearances of the ob-
ject of study rather than for the object of study itself. This is
necessitated by the use of mathematics as the language for the
theory in which a 'mechanism' (a function or a relation) is defined
as a set, i.e., as a collection of all proper combinations of com-
ponents. Such a characterization of a system ought not to create
any difficulty since the set relation, with additional specifications,
contains all the information about the actual 'mechanism' we can
legitimately use in the development of a formal theory (p. 7).

As we have seen here, however, it really is not necessary at all in mathematics

to define a function as a set, since functions can just as well be treated as

unitary basic objects, as in category theory.

Mesarovic and Takahara*s apparent discomfort with the treatment of systems

as sets seems to reflect a genuine intuition about systems that is captured

directly in the HOS approach. Real-world systems are things that cto things,

130

not just collections of objects or their n-tuples. While we can develop coherent,

even useful, theories that treat systems as sets, introducing their functional

character—the processes they undergo—only indirectly after the fact, it would

seem intuitively more natural and more in accord with the actual character of

real-world systems to recognize a system's function as its primary aspect and

to base our theory on that recognition. This is essentially the approach that

is taken in HOS.

.121

REFERENCES

Arbib, M. A. and E. G. Manes, Arrows, Structures, and Functors. Academic Press:
New York, 1975.

Cushing, S., "The Software Security Wool em and How to Solve It," TR-6, Revision 1.
• Higher Order Software, Inc.: Cambridge, MA, July 1977.

Cushing, S., "Algebraic Specification of Data Types in Higher Order Software
(HOS)," Proceedings, Eleventh Hawaii International Conference on System
Sciences: Honolulu, Hawaii, January 1978.

• Hamilton, M. and S. Zeldin, "Higher Order Software Techniques Applied to a
Space Shuttle Prototype Program," lecture Notes in Computer Science, Vol. 19,
Goos and J. Harmanis, Eds., Springer-Verlag: New York, pp. 17-31. Presented
at Program Symp. Proc. Colloque sur la Programmation, Paris, France, August
1973.

1 Hamilton, M. and S. Zeldin, "The Foundations for AXES: A Specification Language
Based on Completeness of Control, Doc. R-964. Charles Stark Draper Labor-
atory, Inc.: Cambridge, MA, March 1976(a).

Hamilton, M. and S. Zeldin, "Higher Order Software—A Methodology for Defining
. Software," IEEE Transactions in Software Engineering, Vol. SE-2, No. 1,

March 1976(b7^

Mesarovic, M. D. and Y. Takahara, General Systems Theory: Mathematical Founda-
tions. Academic Press: New York, "1975.

Whitehead, A. N., Science and the Modern World. MacMillan Co.: Riverside, NJ,
1967.

132

Part 8

HOW TO DO A DATA TYPE

S. Cushing

133

f

(1) LIST ALL OPERATIONS YOU THINK MIGHT BE

USEFUL IN CONNECTION WITH THE TYPE:

OPERATIONS ON THE TYPE MEMBERS

AND

OPERATIONS THAT PRODUCE TYPE MEMBERS

134

(2) LIST ALL PROPERTIES YOU THINK MEMBERS OF THE

TYPE MUST HAVE; LOOK OUT ESPECIALLY FOR INVERSE

OPERATIONS AND DISTINGUISHED ELEMENTS;

ALL THESE PROPERTIES MUST BE EXPRESSED IN AXIOM

FORM IN TERMS OF OPERATIONS IN (1) OR OPERATIONS

ALREADY AVAILABLE ON OTHER TYPES;

IF NECESSARY, ADD NEW OPERATIONS TO (1) TO GET

<1'), AND RECORD ANY DISTINGUISHED ELEMENTS.

JL2C

) I

(3) DETERMINE FROH (2) WHICH OPERATIONS IN (1') CAM

BE EXPRESSED EXPLICITLY IN TERMS Of OTHERS:

REMOVE THOSE OPERATIONS FROM Q') TO GET (1");

REMOVE THE RELEVANT PROPERTIES FROM (2) TO GET

(2')

(THERE MAY BE ALTERNATE CHOICES POSSIBLE;

USE YOUR JUDGEMENT AND REMEMBER WHAT CHOICES

WERE MADE, IN CASE YOU LATER CHANGE YOUR MIND)

136

tt) DETERMINE WHICH PROPERTIES IN (2') CAN BE PROVEN

FROM OTHERS AND REMOVE THEM FROM (2') TO GET (2")

(AGAIN, THERE MAY BE CHOICES AND THE SAME PROVISO
HOLBS)

THIS GIVES YOUR TENTATIVE AXIOM SET (TAS;

1

12L

(

I

(5) TRY VERY HARD TO DERIVE A CONTRADICTION FROM

THE AXIOMS IN TAS: IF YOU CAN, THF. AXIOMS ARE

INCONSISTENT;

DETERMINE WHERE THE INCONSISTENCY RESIDES AND

MODIFY TAS ACCORDINGLY;

THEN REDO THIS STEP AS NECESSARY:

WHEN YOU CAN NO LONGER DERIVE A CONTRADICTION,

YOU ARE AT LEAST ON THE RIGHT TRACK;

THE AXIOMS HAY BE CONSISTENT.

138

(6) CONSTRUCT A MODEL FOR THE AXIOMS OR SHOW THAT

THEY INSTANTIATE A MORE 6ENERAL AXIOM SYSTEM

KNOWN TO BE CONSISTENT;

IF EITHER IS POSSIBLE, THE AXIOMS ARE CONSISTENT.

139

•(

NOTE 1: LOmiSMCI

A PHYSICAL MODEL FOR THE AXIOMS PROVES

CONSISTENCY ABSOLUTELY: IF SOMETHING

EXISTS., ITS PROPERTIES ARE CONSISTENT,

A MATHEMATICAL MODEL OR INSTANTIATION PROOF PROVES

CONSISTENCY RELATIVE TO THE CONSISTENCY OF THE MODEL

OR MORE GENERAL SYSTEM: FOR PRACTICAL PURPOSES, THIS

IS ENOUGH, BECAUSE IF MATHEMATICS ITSELF TURNS OUT

TO BE INCONSISTENT, ALL BETS ARE OFF.

NOTE 2: CDMÖLEIEHESS

THERE IS A FUNDAMENTAL UPPER BOUND. ON COMPLETENESS

OF TYPES:

GODEL'S THEOREM: ANY CONSISTENT AXIOMATIC SYSTEM
THAT IS POWERFUL ENOUGH TO IN-
CLUDE ARITHMETIC IS INCOMPLETE.

I.E.., NO MATTER HOW MANY AXIOMS WE HAVE FOR A TYPE

THAT RELATES TO THE NATURAL NUMBERS, SOME PROPERTIES

OF ITS MEMBERS WILL NOT BE PROVABLE FROM THE AXIOMS:

THESE PROPERTIES ARE USUALLY VERY OBSCURE, HOWEVER;

WE CAN ALWAYS AXIOMATIZE COMPLETELY FOR A GIVEN SET

OF PROPERTIES, WHICH IT'S UP TO US TO SPECIFY;

THUS COMPLETENESS IS ALWAYS RELATIVE TO WHAT YOU HAVE

IN MIND; WHAT PROPERTIES DO YOU WANT THE SYSTEM TO HAVE?

EXAMPLE: LIME

YOU MAY MEAN BY "TIME" JUST A LINEARLY ORDERED

SEQUENCE: IN THAT CASE, ALL YOU NEED IS A LINEAR

ORDERING,

EARLIER NOW LATER

1A±

YOU HAY WANT TO TALK ABOUT TIME GOING FORWARD, BUT NEVER

HAVE IT GO BACKWARD: IN THAT CASE, YOU ALSO NEED AN

OPERATION ADVANCE

ADVANCE
•>

EARLIER NOW LATER

YOU MAY WANT TO BE ABLE TO RUN YOUR SYSTEM BACKWARD:

IN THAT CASE, YOU ALSO NEED AN OPERATION REGRESS

<•

REGRESS

EARLIER NOW LATER

I I

BUT WATCH OUT: WE WON'T NEED REGRESS AS A PRIMITIVE
OPERATION, IF WE HAVE ADVANCE AM REVERSE, BECAUSE
IT CAN BE EXPRESSED IN TERf'lS OF THEM AS A CONTROL MAP

144

(

EXAMPLE:

HOW TO DO TIME

JJLL.

(1) LIST ALL OPERATIONS YOU THINK MIGHT BE

USEFUL ON THE TYPE:

i

Before:

After:

Notafter:

Notbefore:

Advance:

Reverse:

Regress:

operates on tinws,

operates on times,

operates on times,

operates on times,

operates on times,

operates on times,

operates on times,

produces booleans

produces booleans

produces booleans

produces booleans

produces times

produces times

produces times

146

(2) LIST ALL PROPERTIES YOU THINK MEMBERS OE THE

TYPE MUST HAVE:

properties of Before: Before(t,t) - False etc

properties of After: After(f,t) = False

((After(t ,t2) & Af rer(t2,t3>) D After(t(,t3>) --- True etc

properties of Notafter: Notafter(t,t) = True

(Notafter(t.,t2) & NotafterU^tj)) D Equal(t(,t2)) = True

MotafterCtpt«) ! Notaf ter<t2,t() *= True etc

properties of Notbefore: similar to Notafter

properties of Advance: Advance(t,Notime) = t
(Note that Notime must be recorded as a distinguished element)

Advance(t.,t?) ~ Advance(t2,t.)

Advance(t ,Advanced?,t-,))
R Advance(Advance(t. ,t2),t^) etc.

mixed prooe.ttes: Advance(Reverse(t),t) = Notime

NotafterCAdvanceCt ,t2),tj) = Notafter(t2>Notime)

AdvanceCRegress(t.,t2),t2> = t. etc.

•>

I

t ax

(3) DETERMINE FROM (2) WHICH OPERATIONS IN d')
CAN BE EXPRESSED IN TERMS OF OTHERS:

AS AN EQUATION:

Before(t.,t2) = Notaf ter(t|#t2> & Not(Equal (tj ,t2>)

OR AS A CONTROL MAP:

b. - Before<t.,t2)

bj = i(b2,b3)

2 3 l O1 0Z I I

vvv

o* o^ i' r
Clone2(tj,t2)

b0 = Noldfler (t,»t9)
2 O1 0

b3=f3<|rt2)

b3 = No+(b4) b. = Equal(t.,t9)
4 jl ^

SO WE CAN REMOVE BEFORE FROM (D, KEEPING NOTAFTER

SIMILARLY,

AS AN EQUATION:

Regress(t.,t?) - Advanced-.jReversedj))

OR AS A CONTROL MAP:

t_ c Regress(t.,t2>

t, c Advanced-«-»^) t«t4) - f<t,,t2)

SO WE CAN DELETE REGRESS FROM (D, KEEPING ADVANCE AND REVERSE

ETC.

aczz:

NOTE: THESE PARTICULAR CONTROL MAPS ARE MORE COMPLICATED

THAN THEY NEED BE, BECAUSE ONLY PRIMITIVE CONTROL

STRUCTURES ARE USED.
THIS IS FOR EXPOSITORY PURPOSES ONLY.

CONTROL MAPS CAN BE GREATLY SIMPLIFIED BY USING

ABSTRACT CONTROL STRUCTURES -- AND REMEMBER:

IT GETS EASIER WITH PRACTICE

TLÜ.

t 3

-

Re
gr
es
s

(t
j.
tg
)

t,
 •

Ad
va
nc
e

(J
t£
t 4

)
;/
(t

5.
t 4

)
=

f{
t r

t 2
r,

,*
..

!
t 5

*
I
d
e
n
t
i
f
y
^
)

S

 t
4

«

Re
ve
rs
e

(t
2
)

t 3
 *
 R

eg
re

ss

(t

j.
tg

)

t 3
 *
 A

dv
an

ce
(t
l
t
t 4

)
t 4

=

Re
ve
rs
e(
t 2

)

(a
)

De
co

mp
os

it
io

n
in

Te

rm
s

of
 P

ri
mi
ti
ve

Co
nt
ro
l

St
ru
ct
ur
es

(b
)

De
co

mp
os

it
io

n
In

te

rm
s

of
 t

he

Ab
st
ra
ct

Co
nt
ro
l

St
ru

ct
ur

e
CO
JO
IN

Tw
o

Co
nt
ro
l

Ma
ps

fo
r

Op
er

at
io

n
Re
gr
es
s

on

Da

ta

Ty

pe
 T

IM
E

.....
 ¥

I

W DETERMINE WHICH PROPERTIES IN (2') CAN BE
PROVEN FROM OTHERS:

SUPPOSE WE HAVE THE THREE AXIOMS

(1) Notafter<t,t) = True

(2) ((Notafterdyty & NotafterCt^tj)) D Equal Ct|#t^)) = True

(3) Notafter(i.,t2) t, Nötafter(x2,t.)
c Equal (t(,t2>

HERE (3) CAN BE PROVEN FROM (2) AND (1), AND EACH

OF (2) AND (1) CAN BE PROVEN FROM (3), SO WE DON'T

NEED ALL THREE AXIOMS.

USE YOUR J11DSEMENT.
KEEP EITHER (3) OR (2) AND (1), DEPENDING ON WHAT

YOUR EXPERIENCE AND YOUR KNOWLEDGE OF YOUR PARTICULAR

PROBLEM TELL YOU WILL BE MOST USEFUL.

152

STEPS ü) - M) GIVE US A TENTATIVE AXIOM SET SOMETHING

LIKE THE FOLLOWING (DEPENDING OH THE CHOICES THAT WERE MADE):

(1) Notafter(t,t) = True

(2) <(Notafter<t.,t2> & Notdfter(t2#t3>) D NotafteHt,,^)) * True

(3) ((Notafter<t|#t2) & KotafteKt^tj)) D EquaKt^)) = True

(4) Notafter(t.,t2) ! NotafterCt^tj) = True

(5) Advance(t,Notime) - t

(6) Advance(t.,t2) - Advance(t2,tj)

(7) Advance(t.,Advance(t2,t,>) - Advance(Advance(t j,^),^)

(8) Notafter(Advance(1,,i2),t,) = Notafter(t2,Notime)

(9) Advanee(Reverse(t),t) = Notime

153

I

(5) TRY TO DERIVE A CONTRADICTION: IN THIS CASE

YOU CAN'T (TRY IT!)

BUT SUPPOSE WE HAD GOOFED AMD WRITTEN

(*) NotafterCt.t) = False

INSTEAD OF AXIOM 1; THEN LET

t. « t

+2 = +

THIS GIVES

Notafter(t.,t) = Notafter(t.t) = False

and tatafter(t2,t() = Notafter(t.t) - False

SO WE GET

Notaf ter(t|,+2) ! NotafterCt^t > = False

BUT THIS CMLBMLCia AXIOM!

THIS WOULD REQUIRE RE-EXAMINING THE AXIOMS TO SEE WHAT

WENT WRONG; WITH A LITTLE THOUGHT WE WOULD FIGURE OUT THAT

(*) SHOULD HAVE BEEN 1.

(6) CONSTRUCT A MODEL FOR THE AXIOMS:

IN THIS CASE A MATHEMATICAL MODEL CAN BE CONSTRUCTED

EQR TIME TIKE THE RATIONAL NUMBERS

Notaftcr <

Advance +

Reverse 0-

Nottme 0

THE AXIOMS THEN BECOME

(1) Cr < r) = True TRUE!

(2) ((rj < r? & r2 < r3> D r(< r^) = True TRUE!

(3) ((rj < r. & r2 < r() D r^ = rv,) = True TRUE!

(4) (rl ~ r2 ! r2~ r\) s True TRUE!

(5) r + 0 = r TRUE!

(6) r. + r2 = r2 + r, TRUE!

(7) r, + (r2 + r3) = <r. -» r2> + r3 TRUE!

(8) ((Tj + r.) < Tj) = (r2 < 0) TRUE!

(9) (-t) + t « o TRUE!

SINCE THE AXIOMS HAVE A MODEL THEY ARE CONSISTENT

I
I

DIE: THE RATIONALS ARE A. MODEL FOR THESE TIME AXIOMS

BUT NOT JJJE Dili MODEL
ONCE WE HAVE A MODEL WE KNOW THE AXIOMS ARE CONSISTENT;

BUT ONCE WE KNOW THE AXIOMS ARE CONSISTENT,

WE CAN THEN CHOOSE fiffif. MODEL;
IN OTHER WORDS, M IMPIFMENTATION OF THE OPERATIONS

IS OKAY, AS LONG AS IT SATISFIES THE AXIOMS;

WHICH IMPLEMENTATION YOU CHOOSE DEPENDS ON YOUR

APPLICATION AND YOUR JUDGEMENT

MIA TYPE: TIME;

PRIMITIVE OPERATIONS:

time. -; AdVänceCtime. »time»);

boolean » Note)fter(time. ,time„);

time» = ReverseCtime.);

AXIOMS:

WHERE t,t.,t t3 ARE TIMES;

WHERE Not Ime IS A CONSTANT TIME;

Notaftor(t,t) = True; (I)

((Notafter(1|,t2) & NotafterCt^tj)) D NotafterCt^t^) = True; (2)

((Notafter(tj,t2) & NotafterCt2,t,)> 3 Equal<t|ft2>) • True; (3)

Notafter(tj,t2) ! Notafter(t2,t|) = True; (4)

Advance(t,Notime) = t; (5)

Advance(t.,t2) = Advance(t?>t.); (6)

Advance(t.,Advance(t2,t,)) = Advance(Advance(t. ,t2>,K); (7)

NotafterCAdvanccCtj,^)^^ - Notafter(t.,,Notime); (8)

Advance(Reverse(t),t) - Notfme; (9)

END TIME;

Gr
ou
p

=
[£

,<
o]

S:

G,

Ne

ut
 t

:
G

to
:
Mu

lt
:
G
x
G
 +

 G

In
v:

G

•»•
 G

Ax
io
ms
:

Fo
r

al
l

g*
;3

t*

g 2

t
gß
»

c
G,

1.

M-
Jl
t

(g
l
t
Ku
n(
g 2

,g
3
J

*

Mu
U.
(M
u1
t(
g r

g 2
),
g 3

)

2.

Mu
lt

(N

eu
t,

g)

*

g
.

3.

Mu
lt

(g

,.
.N

cu
t)

»

g

4.

Mu
lt

(g
,I
nv

(g

))

«

Ne
ut

Th
e

Gr
ou
ps
 e

s
Al

ge
br

as

2:

IN

TE
GE

RS
,

ZE
RO
 e

IN
TE
GE
RS

w:
+:

IN
TE
GE
RS
 x

IN

TE
GE

RS
 •

»•
IN

TE
GE

RS

-:

IN
TE

GE
RS

 *
 I

NT
EG

ER
S

Ax
io

ms
:

Fo
r

al
l

i,

ij
,

i 2
,

i 3
»

c
IN
TE
GE
RS

i.

(
n

+

(i
t
+

is
))

*

((
1i

+
10
.+

 1
0

2,

Ze
ro
 +

i
*

i
3,

i
+

Ze
ro
 *

1

4,

i
*

(-
1)

*

Ze
ro

S:

PR
AT
IO
NA
LS
,

On
e

c
PR
AT
IO
NA
LS

w:

•
:
PR
AT
IO
NA
LS
 x
 P

RA
TI
ON
AL
S

+•
 P
RA
TI
ON
AL
S

V
:

PR
AT
IO
NA
LS
 -

»•
PR
AT
IO
NA
LS

Ax
io

ms
:

Fo
r

p,

p l
f

p 2
f

p,

c
PR
AT
IO
NA
LS

1.

(P
i

'
(P

:
•
Ps
))
'*

((

Pi
/

Pa
)

•
Pa
)

2.

On
e

•
p

*
p

3,

p
•
On

e
«

p
4,

p

(1
/p

)
«

On
e

Th
e

In
te

ge
rs
 a

s
a

Gr
ou
p

Th
e

Po
si
ti
ve
 n

at
io

na
ls
 a

s
a
Gr

ou
p

DATA TYPE SCALAR

DATA TYPE: SCALAR;

PRIMITIVE OPERATIONS:

scalar - SSum(scalar.,scalar_);

scalar, ~ SMult(scalar.»scalar^);

scalar- « SOpp(scalarj);

scalar^ = SInv(scalar.);

AXIOMS:

WHERE sc,sc ,sc2,sc3 ARE SCAURS;

WHERE SZero,SUnit ARE CONSTANT SCAURS;

SSum(sc ,SSmn(sc2,sc.)) = SSt!m(SSum(sc ,sc2),sc); (1)

SSum(sc ,sc2) = SSum(sc2>sc.);» (2)

SSum(sc,SZero) = sc; (3)

SSum(sc,SOpp(sc)) = SZero; (4)

SMult(sc1,SMult(sc2,sc3» * SMult(SMultCsc1,sc2),sc5); (S)

SMult(scJl,sc2) * SMult(sc2,sc1); (6)

SMult(sc,SUnit) = sc; (7)

Slnv(SZero) « REJECT; (8)

SMult(sc,SInv(sc)) - K^^^sc) AND KRfc.jnCT(sc) ; (9)

PARTITION OF sc IS

sc|sc f Szero,

sc|sc -• SZero;

SMult(scrSSum(sc2,sc3)) -• 5Su«(SMult {>c} »se^SMult (sv^sc^)) ; (10)

DATA TYPE VECTOR

DATA TYPE: VECTOR;

PRIMITIVE OPERATIONS:

vector. ~ VSura(vectorj.vector-);

vector2
s VOpp(vcctor-);

vector- = VMult(scalar,vector.};

AXIOMS:

WERE v,v,»v2»v3 ARE VECTORS;

MIERE sc,sc ,sc, ARE VECTORS;

WHERE VZero IS A CONSTANT VECTOR;

VSum(v1,VSum(v2»v3)) = VSum(VSum(vJtv2),v$); (1)

VSum(vrv2) * VSum(v2,Vl); (2)

VSum(v,VZero) = v; (3)

VSum(v,VOpp(v)) = VZero; (4)

VMult(SUnit,v) = v; (S)

VMult(SSun(scl,sc2),v) = VSiu;i(VMult(sci,v),VMult(sc2,v)); (6)

VMult(sc,VSum(v|fv2)) * VSuni(VMult(sc,vJV»VMult(sc,v2)); (7)

VMult(SMult(scl,sc2),v) = VMult(sc1,VMult(sc2,v)); (8)

END VECTOR;

60
g»w"—^ 'wiiiiii—Mump—i»"I "ii i iiMiiiijjiiimMi>rr~"'"

DATA TYPE ADDRESS

DATA TYPE: ADDRESS;

PRIMITIVE OPERATIONS:

boolean. = Equal(address.»address-);

AXIOMS:

WHERE A|fA2 ARE ADDRESSES;

Equal(A.,A.> * True;

Equa!(A.,A2) = Equal (A^Aj);

Entalls(Equal(A|,A2) & Equal (A^A^), Equal (Aj ,A3>) = True;

END ADDRESS;

DATA TYPE: ADDRESS;

PRIMITIVE OPERATIONS:

AXIOMS:

END ADDRESS;

16?
BMft*w««w-^ WWW— igül

DATA TYPE STACK

DATA TYPE: STACK;

PRIMITIVE OPERATIONS:

stack. « Push(stack-,integer.);

stack. K Pop(s+ack2);

Integer. = Top(stack.);

AXIOMS:

WHERE Newstack IS A CONSTANT STACK;

WHERE s IS A STACK;

WHERE I IS AN INTEGER;

Top(Newstack) = REJECT;

Top(Push(s,i)) = I;

Pop(Newstack) = REJECT

Pop(Push(s,I)) n s;

END STACK;

,,l£.,a.

PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY

17-2'» 16 1215 9-n 3.-8 1-2

PRIORITY

2h

PRIORITY

16

1
PRIORITY

15

PRIORITY

11

PRIORITY

8

PRIORITY

2 •

STRICT PRIORITY QUEUE: Entrance strictly by_ priority; arrows show
cxTT point, entrance" points, and direction of flow throuyh queue.

IF,/I

DATA TYPE STRICT PRIORITY QULUE

DATA TYPE: QUEUE;

PRIMITIVE OPERATIONS;

queue. « Adel (job, queue ,> ;

queue_ « Remove(queue«);

job ~ Front(queue);

boolocin - Equal (queue, ,queue») ;

natural •= Size (queue);

AXIOMS:

WHERE Nullq IS A CONSTANT QUEUE,

WHERE Capacity IS A CONSTANT NATURAL;

1. Front (Nullq) =» REJECT;

2. Front (Add (j,q)) « Xj AND Front(2q) AND *mjECT(\):

3. Remove(Nullq) « REJECT;

4. Remove(Add(j,q)) w *q AND Add (2j , Remove (2q)) AND K0f?„..m(
3q> ;

PARTITION OF (j»q) IS

1(Jrg)I(Equal(q,Nullq)!>(Priority(j)»Priority(Front(q)))) &

Size (q) <Capacity,

2(j,q)|(Not(Equal(q »Nullq))Z<(Priority(j),Priority(Front(q))))

& Size(q)<Capacity,

*>
(j,q) |size(q)_>Capacity;

5. Equal(Nullq,Nullq) " True;

6. Equal(Nullq»Add(j»q)) = False;

7. Equal(Add(j,q),Nullq) = False;

Ö. Equal(Add(j.»q}), Add(j^,q2)) p Equal(j^ ,J2>& Equal(q q) ;

(J. Size (Nullq) « Zero;

10. Size(Add(j,q)) « Slice (Size q)) AND Suec(Size (2q))AND K(5q);

Part 9

FUZZY SFTS AND APPROXIMATE REASONING

L. Vaina

. H6

"Both precision and certainty are false ideals.

They are impossible to attain, and therefore

dangerously misleading if they are uncritically

accepted as guides. The quest for precision is

analogous to the quest for certainty and both

should be abandoned. 1 do not suggest, of course,

that an increase in the precision of, say, a

prediction, or even a formulation, may not some-

times be highly desirable. What I do suggest is

that it is always undesirable to make an effort

to increase precision for its own sake—especially

linguistic precision—since this usually leads

to lack of clarity, and to a waste of time and

effort... One should never try to be more precise

than the problem situation demands."

- Karl Popper
Unended Quest, 1976

67

FUZZY SETS AND APPROXIMATE REASONING

Much of the decision making in the real world takes place in an environment

in which the goals, constraints, and consequences of possible actions are

not known precisely. To deal quantitatively with this imprecision, we

usually employ the concepts and techniques of probability theory, and,

more particularly, the tools provided by decision theory, control theory,

and information theory. In doing u, we are tacitly accepting the premise

that imprecision, whatever its nature, can be equated with randomness.

This, in my view, is a questionable assumption. I claim that there is a

need for differentiation between randomness and fuzziness, with the latter

being a major source of imprecision in many decision processes. By fuzzi-

ness we mean a type of imprecision which is associated with fuzzy sets;

that is, classes where there is no sharp transition from membership to non-

membership. In sharp contrast to the notion of a class or a set in

mathematics, most of the classes in the real world do not have crisp

boundaries which separate those objects which belong to a class from those

which do not.

What is the distinction between randomness and fuzziness? Randomness

has to do with uncertainty concerning membership or non-member.-hip of

an object in a nonfuzzy set. Fuzziness has to do with classes in which

there may be grades of membership intermediate between full membership

and non-membership.

Example: "The grade of membership of John to the class of tall
men is 0.7 " is a nonprobabilistic statement concerning the membership
of John in the fuzzy class of tall men, whereas "the probability
that John will get married within a year is 0.7" is a probabilistic
statement concerning the uncertainty of the occurrence of a nonfuzzy
event (marriage).

Reflecting this distinction, the mathematical techniques for dealing with

fuzziness are quite different from those of probability theory. They are

simpler in many ways because to the notion of probability measure in

probability theory corresponds the simpler notion of membership function

in the theory of fuzziness.

icn.

In speaking of the variety of imprecision, a point that is in need of

clarification relates to the distinction between fuzz\ness and vagueness.

Vagueness is viewed as a particular form of fuzziness. So, a fuzzy pro-

position, "John_ is J^uite tjilj" ^
S
 fuzzy by virtue of the fuzziness of the

class quite tall. A vague proposition, on the other hand, is one which

is (1) fuzzy and (2) ambiguous--in the sense of providing insufficient

information for a particular purpose. So, "John is quite tall" may not be

sufficiently specific for deciding which size of car to buy for John.

In this case, the propositional question is both fuzzy and ambiguous,

and hence is vag^e. On the other hand, "John is quite tall" may provide

sufficient information for choosing a tie for John, in which case the

proposition in question is fuzzy but not vague. Vagueness is an applica-

tion c_o nte.x t^de pen dent characteristic of a proposi tion, whereas fuzzy is

not.

The theory of fuzzy sets has two distinct branches. In one, a fuzzy set is

treated as a mathematical construct concerning which one can make prov-

able assertions. This "nonfuzzy" theory of fuzzy sets is in the spirit of

traditional mathematics and is typified by the rapidly growing literature

on fuzzy topological spaces, fuzzy switching function, fuzzy orderings, etc,

The other branch may be viewed as a "fuzzy" theory of fuzzy sets in which

fuzziness is introduced into the logic which underlies the rules of manipu-

lation of fuzzy sets and assertions about them. The genesis of this branch

of the theory is related to the introduction of the so-called linguistic

approach, which in turn, has led to the development of fuzzy logic. In

this logic the truth-value as well as the rules inference are allowed to

be imprecise with the result that the assertions about fuzzy sets based

on this logic are not, in general, provable propositions in two-valued

logic. For example, the proposition "John is very intelligent" may be

"more or less true." The fuzzy "theory" of fuzzy sets is still in its

initial stages of development, but it is important as a foundation for
aPP.rQxjmaJ;e reasoning, or equivalently, fuzzy reasoning. Such reasoning

characterizes much of the human thinking and is the basis of the remark-

able human ability to attain inprecise specified goals in an incompletely

unknown environment.

169

Zadeh

... in general complexity and precision bear an inverse relation to
one another in the sense that, as the complexity of a problem in-
creases, the possibility of analyzing it in precise terms diminishes.
Thus, 'fuzzy thinking' may^be deplorable, after all, if it makes
possible the solution of problems which are much too complex for
precise analysis.

The essence and power of h"man reasoning is in its capability to grasp and

use inexact concepts directly. Zadeh argues that attempts to model or

emulate it by formal systems of increasing precision will lead to de-

creasing validity and relevance.

However, it is important to keep in mind that Zadeh's analysis of human

I^iPJiilJiLPJTOCP_ss,e-S and his exposition of fuzzy set theory are not one

j*5JLjifag same~-they must be separated conceptually. Fuzzy sets are to

approximate reasoning what lattice theory is to a propositional calculus:

a vital mathematical tool for certain approaches to the theory, but not

the theory itself.

Fuzzy Sets

Informally, we have seen that a fuzzy set is a class of objects in which

there is no sharp boundary between those objects that belong to the class

and those that do not.

Definition: Let X = {x} denote a collection of objects X. A fuzzy

set A in X is a set of ordered pairs A = {(x, I^fX))}, xex, where

IY{x) is termed the grade of membership of x in A, and Vp\ X+M

is a function from X to space M called the membership space. When

M r {0,1}, A is nonfuzzy and its membership function becomes identi-

cal with the characteristic function of nonfuzzy set. In general,

we assume that M = [0,1]. So, the fuzzy set A, despite the unsharp-

ness of its boundaries, can be defined precisely by associating

with each object X a number between 0 and 1 which represents its

grade of membership in A.

170

NOTATION: A = {x|x » 5} will denote the set of numbers which are approximately

equal to 5. The symbol - will be referred to as a fuzzifier.

NORMALITY: A fuzzy set A is normal iff Sup I'(x) ~ 1, the supranum of
X n

i\(x) over X is unity. A fuzzy set is subnormal if it is not normal, a

SUPPORT: The support of a fuzzy set A is a set S(A) such that X e S(A) <=>

r.(x) >0, If TA(x)
c constant over S(A), A is nonfuzzy.

EQUALITY: Two fuzzy sets are equal, A=B, iff rA(x)
=r
B(x),

CONTAINMENT: A fuzzy set A is a subset of a fuzzy set B, A B, if rA(x) <

rB(x),

COMPLEMENTATION: A' is the complement of A iff rA.(x)
s l-rA(x)t

INTERSECTION: AOB is the largest fuzzy set that contains both A and B;

rA0B(x) - Min(rA(x),rB(x)), (\l) xtx

UNION: AJB, rAUß(x) = Max (rA(x), rß(x)) (V)x€X

Example: Fuzzy Goals, Constraints, and Decisions

In the conventional approach to decision making, the principal ingredients

of a decision process are:

(a) a set of alternatives

(b) a set of constraints on the choice between different alternatives

(c) a performance function which associates with each alternative
the gain resulting from the choice of that alternative.

When we view a decision process from the broader perspective of decision

making in a fuzzy environment, a different and perhaps more natural con-

ceptual framework suggests itself. The most important feature of this

framework is its symmetry with respect to goals and constraints--a sym-

metry which erases the differences between them and makes its possible to

relate to a relatively simple way the concept of decision to those of the

goals and constraints of a decision process.

171

Let X n {x} be a given set of alternatives. A fuzzy goal G, in x is
identified with a given fuzzy set 6 in X.

ample: X = R (the real line)» then the fuzzy goal expressed

in words "x should be substantially larger than 10," might be
represented by a fuzzy set in R whose membership function is

(subjectively) given by:

[0 x < 10 (A) rG x) -

«•fc-W^ViW

A Fuzzy Constraint: C, in X, is defined by a fuzzy set in X.

Example: In R , "x should be approximative between 2 and 10,"

could be represented by the fuzzy sets with the membership
function.

(B) Fr(x)
= (1 + a(x-6))" , where a i^ a positive number, m is a

positive even integer, chosen in such a way as to reflect the sense
in which the approximation of the interval [2,10] is to be understood.

For example, if we set m=4, a=5~ , then at x=2 and x=10 we have
rc(x) - -0.71. The constraints and goals being defined as fuzzy sets
in the space of alternatives, thus can be treated identically in the
formulation of a decision.

Example: G: x should be substantially larger than 10,
C: x should be in the vicinity of 15, or rr(x)

given by (A) and rc(x) by (B).

DECISI0T{: as a choice, or a set of choices drawn from the available

alternatives; v/e define a fuzzy decision as the fuzzy set of alternatives
resulting from the intersection of the goals and constraints.

rD(x) - rGnc(x) * iG(x)A rc(x), (V)xex

I',nr(x) - (Min((l + (x-lO)-V1, (1 * (x-15)4)"1

0 x<10

172
i

The? relation between C, C, I) is depicted in

Let K be the set of points in x on which rn attains its maximum. Then the

nonfuzzy subset 0 of D defined by

r M (x) - (Max rD(x), xü X

v^O elsewhere

will be said to be the ^tJ^aL^ej:isiori.

In defining a fuzzy decision D as the intersection of the goals and con-

straints, we assume that all of the goals and constraints are of equal

importance. There are more cases where some of the goals or some of the

constraints are of the greater importance than others. In such cases D

might be expressed as a convex combination of the goals and constraints,

with the weighing coefficients re1feeting the relative importance of the

constituent terms.

n m
rn(x) - T. a.(x) rr (x) + z ti.(x) r (x)

u t«i 1 bi j=i J ej

a- and fi. are membership functions such that

n in
I a.(x) + X ß.(x) - 1

i 1 l M

173

£u/zy M^PlUfHI.'-b^AyUJi]^11vtlc Variable

In retreating from precision in the face of the overpowering complexity, it

is natural to explore the use of what might be called linguistic variables;

that is, variables whose values are not numbers but words or sentences in

a natural or artifical language. The motivation for the use of words or

sentences rather than numbers is that linguistic characterizations are,

in general, less specific than numerical ones. For example, in speaking

of age, when we say, "John is young," we are less precise than when we

say "John is 25." Young may bo regarded as a linguistic value of the

variable Age, with the understanding that it plays the same role as the

numerical value 25 but is less precise and hence less informative. The

same is true of the linguistic values ^ary young, not young, extremely

young, not very young, etc. The values of the linguistic variable con-

stitute its term-set. The term set of linguistic variable Age is T(Age) =

{Young + not young + very young + not wery young +...+ extremely young +...

+ old, not old, etc.} in which • + ' is used to denote the union. The

numerical variable Age,whose values are numerical,constitute the base

variable for Age. Each linguistic value is interpreted as a label for a

fuzzy restriction on the values of the base variable. The fuzzy restric-

tion defines the linguistic value. In order to characterize a fuzzy re-

striction, Zadeh introduces a compatibility function which associates

with each value of the base variable in the interval [0,1] representing

its compatibility with the fuzzy restriction. Zadeh associates the lin-

guistic variable with two rules: (a) A syntactic rule that specifies

the manner in which the linguistic values which are in the term set of the

variable may be generated, (b) A semantic rule which specifies a pro-

cedure for computing the meaning of any given linguistic value. The mean-

ing of terms is both subjective and context-dependent.

Definition: A variable is characterized by a triple (X,U,R(X;u)),

in which X is the name of the variable, U is a universe of discourse

(finite or infinite set), u is a generic name for the elements of U,

and R(X*,u) is a subset of U which represents a restriction on the

values of u imposed by X. A variable is associated with an assign-

ment equation x - U: R(X)> which represents the assignment of a value

u to x subject to the restriction R(X). Obviously, the assignment

equation is satisfied if and only if u € R(x).

W

Zatteli introduces the concept of possibility distribution in the following

way: Let F be a fuzzy subset of U characterized by a membership function

IV. F is a fuzzy restriction on X if F acts as an elastic constraint on

the values that may be assigned to X. So X = u: IV(u), where IV(u) is

interpreted as the degree to which the constraint represented by F is satis-

fied when u is assigned to X. In order to express that F plays the role

of fuzzy restriction in relation to X, we write R(X) - F. We call this

equation a relational assignment equation because it represents the assign-

ment of a fuzzy set to the restriction associated with X.

Now, let us have a proposition p = X is F, where X is the name of an in-

dividual, and F is the name of a fuzzy subset of U. We express p, by

R(A(X)) - F where A(X) is an implied attribute of X which takes values

in U and signifies that we assign F to the fuzzy restrictions on the values

of A(X).

Definition: Let F be a fuzzy subset of a universe of discourse U

which is characterized by its membership function IV, with the grade

of membership, IV(u), interpreted as the compatibility of u with the

concept labeled F. Let X be a variable taking values in U, end let

F act as a fuzzy restriction, R(X), associated with X. Then the

proposition "X is F", translated into R(X) = F, associates a pos-

sibility distribution, IL,, with X which is postulated to be equal

to R(X); It» - R{X), so II» may be regarded as an interpretation of the

concept of fuzzy restrictions.

The possibility distribution function associated with X is denoted by

•n» and is defined as being numerically equal to the membership function of

F, 7fy - IV. Thus ir„(u), the possibility that X - u, is postulated to be

equal to rv(u).

If p is a proposition p = Xis F, which translates into the possibility

HA/VX " F where F and A(X) are as in previous definitions, then the in-

formation conveyed by p, I(p), may be identified with the possibility

distribution HA#y\» of the fuzzy variable A(X). thus, I(p) - Il.,x»

where ll^j --. R(A(X)) = F.

176

I will conclude here, by pointing out that Zadeh's possibility theory

provides a basis for a more adequate meaning representation of the environ-

ment of actions, tasks, goals, etc. and for the manipulation of the fuzzy

knowledge, which is the type of knowledge which underlies natural language

as well as most of human reasoning.

If the goal of science and objective knowledge is to construct models

that are closer and closer approximations of reality, Zadeh's fuzzy logic»

that is a model for approximate reasoning with vague data is an enormous

step forward: rather than regard human reasoning processes as themselves

'approximating,' to some more refined and exact logical process that could

be carried out perfectly with mathematical precision, Zadeh has suggested

that the essence and power of human reasoning is in its capacity to grasp

and use inexact concepts directly. Zadeh argues that attempts to model

or emulate it by formal systems of increasing precision will lead to de-

creasing validity and relevance. Most human reasoning is essentially

"shallow" in nature and does not rely on long chains of inference unsup-

ported by intermediate data. It requires, rather than merely allows,

redundancy of data and path of reasoning; it accepts minor contradictions

and contains their effects so that universal inferences may not be derived

from their presence.

A76

Part 10

FUZZY LOGICS: A SURVEY

H. M. Prade

177
• i ——• •

FU7ZY lOGICS : A SURVEY

CONTENTS :

1.INTRODUCTION :

* TWO POINTS OF VIEW ABOUT FUZZINESS

* CAUSALITY AND IMPLICATION

2.MULTIVAIENT LOGICS :

p 85

p 8/

P 87

p 88

o 90

3.GENERALIZED MODUS PONENS : p 94

4.FUZZY-VALUED LOGICS

5.CONCLUDING REMARKS

p 98

P99

REFERENCES p 101

178

»•*?*-——•••

FUZZY LOGICS : A SURVEY

Henri M. Prade

CONTENTS :

The topic of this talk Is "fuzzy logics" -- "logics" with an "s" because there

arc several manners to interpret the expression or for example , to define an 1mpl1_

cation . But anyway , it deals with some kinds of approximate reasoning .

Before beginning , I would want to say that this attempt of synthesis is the result

of a common work with Oidicr Oubois , who is presently at Purdue University .

The first part of my talk is devoted to a rather philosophical introduction about

principally fuzziness and causality . The second one deals with different kinds of

nultivalent logics , the third one with what Is called "generalized modus ponens"

in fuzzy set theory , the fourth one with fuzzy-valued logics . Naturally , I will

terminate by some concluding remarks .

* Visiting scholar at Stanford Art.Int.Lab. Stanford University ,94305 CA. Apr.1978

The author is supported by a scholarship of the Institut de Rccherches en Informatik

que et Automatique . Rocquencourt . 78150 IE Chesnay . France .

** H.O.S. Cambridge . MA. 5/24/78 .

179

1 . INIKOIUICIION :

a) What Is füzziness ?

fuzzy set theory was first Introduced by L.A.7adeh in 1965 [30] . Since this dato ,

there have been mure than a thousand of papers about this domain and its appl1ca_

tions . A lot of then dealed , in different nanners , with set theory and logic .

Notwithstanding this big amount of works , there is some confusion still , about

what is fuzziness .In fact , there are basically two points of view .

In the first one , introduced by Zadch , we consider a universe of discourse U and

a subset A where transition between membership and nonmembership is gradual than

abrupt . There is no well-defined boundary for this fuzzy subset A . For each ticU ,

m (u)<[#.)] expresses the compatibility of predicate A with the element u of I) . ui ,
A A

napping from U to [0,1] is the membership function of A . However , if imprecision

-- especially subjective one -- is usually fuzzy , this fuzziness is different from

imprecision in the sense of tolerance intervals . Linguistic description (it is to

say » very often , summarized description of complex situations) are fuzzy in

nature . More generally ,we can say perhaps that human perception is fuzzy . Let us

consider an example : Ü = [50,220] , A = "tall" ; from the statement "X is tall" we
en

may induce , as Zadeh pointed it out [31] , a distribution of possibility about the

tallness of X : m (u) can be interpreted as the degree of possibility that X's
A

height is equal to u .We are not interested here in what way m is got t in fact ,
A

it can be shown that generally a precise knowledge of m Is not important for the
A

practical applications .

The second point of view , dual in some sense of the first one , was Introduced by

Sugono in 1074 [27] . In Sugeno's approach we are interested in guessing (most

often subjectively) if an a priori non-located element ucU is an element of a

subset A of U ; A is not necessarily fuzzy here . g (A) expresses the subjective
u

degree of belief in the statement "u<A" . g is a mapping from P(U) (set of the
u

(fuzzy) subset of Ü) to [8,1] , g is called a fuzzy measure . The notion of fuzzy
u ••

measure is very general , because only increasingness is supposed , not the additi

180

-*- ' ••--•-•——"-• Mt"" ,""a

vity . So , probability functions , the belief function and plausibility function

studied by Shafcr \?S] , and even possibility functions arc particular cases of

fuzzy measures .

let me give an example to illustrate both points of view . When we are looking at

a Ming vase , we can say for example that It is big or beautiful ; here , "big" and

"beautiful" are predicates which point to fuzzy subsets In the sense of Zadeh of U ,

set of Ming vases . But we may also try to guess -- because we are not experts , just

amateurs -- if the vase Is genuine or counterfeit . Both approaches are not exclus1_

ve : we may try to guess is the vase is old where "old" 1s obviously a fuzzy predi_

cate . Sometimes the difference between the two approaches is very subtle : when I

say "X is tall" , either I may model the statement by "X is an element of the fuzzy

subset of the tall men" or I may consider that it induces a possibility distribution

which values the possibility that X's height is an element of some fuzzy or non-fuz_

zy interval -- for example [1/5,188] .

b) Implication & causality :

After having tried to explain what is fuzziness , I am going to end this 1ntroduc_

tion by some Intuitive considerations about fuzzy logic . It may be a calculus

either on the levels of belief of precise propositions or on the truth of proposi_

tions involving fuzzy predicates . In both cases , multivalent logics can be the

logical calculus underlying fuzziness . In most of the multivalent logics , there Is

no more excluded-middle law : this situation may be interpreted as either the

absence of decisive belief in one of the sides of a precise alternative or the

interference between antonym fuzzy concepts (e.g. "small" and "tall") .

Fuzzy logics must also cope with difficult questions such as the difference between

implication arid causality . We must try to avoid confusion between deductive 1nfe_

rence with fuzzy predicdtes and causal inference with dubious premisses or/and

erttaiInvent (modelled by what is called "fuzzy relations") . In the five

181

»'•

following examples , the two first ones are implications and the other ones involve

causality :

1) If the cat is black , ha is not white .

Z) If the cat is big , he is not small .

3) If the cat is run over by a car , he will be dead .

4) If the cat falls from the 10th floor , he will be more or less hurt .

5) If the cat overeats , perhaps he will become obese .

1 and 3 are no', fuzzy , 2 ,4 and 5 are fuzzy in some sense .

182

2. MULTIVALENT LOGICS :

1)Descr ipti jii :

There are Ruty possibilities to extend the definition of the usual connectives of

the binary logic to multivaler.t logics . Most of then were first studied by

Lukasiewicz in the thirties . I will first recall them .

a) Multivalent logics using "max" and "min" (resp.) for disjunction

and conjunction (resp.) :

Bellman & Giert* [1] and Fung & Fu [10] have shown that to preserve structural

properties such as associativity , commutativity , distributivity , idempotency

for conjunction and disjunction connectives , and semantic properties such as

continuity , growth for their interpretative functions , the only functions ,

when the valuation set is [8,1] , arc :

v(PAq) = min (v(P), v(Q))

v(Pvq) = max (v(P), v(Q))

Most of the authors use for negation v(-»P) = 1 - v(P) , but it is not the only

choice which is compatible with involution property . Excluded-middle law is no more

valid .

For the implication , many interpretative functions have been proposed :

\) v(P-O) = max (1 - v(P) , v(Q)) (Dienes , Rescher [22])

2) v(P-Q) = min (1 , 1 - v(P) + v(Q)) (Zadeh's logic)

3) v(P-»Q) = 1 iff v(P) s- v(Q)
= v(Q) otherwise (Brouwer implication . See [11],[28],[24])

4) v(P-q) = max (1 - v(P) , min(v(P),v(Q))) (Zadeh)

5) v(P-Q) = min (1 , y(Q)/v(P)) (Goguen [13])

It will be too long to give here all the other classical connectives of these

logics . For example , the equivalence connective which is associated with the

implication number 2 is

v(P-Q) = I v(P) - v(Q) |

183

b) Other multivalent logics :

There are other possibilities to define conjunction and disjunction :

* "probabilistic logic" :

v(-.P) = 1 - v(P)

V(PAQ) = v(P).v(Q)

v(PvQ) = v(P) + v(Q) - v(P).v(Q)

the corresponding implication is

v(P-»Q) = I - v(P) + v(P).v(Q) = v(nPvp)

* non-distributive logic :

v(-.P) = 1 - v(P)

V(PAQ) = max (0 , v(P) + v(Q) - 1)

v(PvQ) = min (1 , v(P) + v(Q))

In this calculus , we have the excluded-middle law but no more the idempotency

and distributivity properties . Here , [0,1] is a non-distributive complemented

lattice instead of a distributive non-complemented lattice with "miny and "max"

operators . This logic is not very easy to interpret although it seems to be a

candidate to model ambiguity (see [12] , [9]) .

More generally it is possible to build new connectives as , for example ,

(1-A).max(v(P) ,v(Q)) + X.min(v(P) ,v(Q)) where Ac[8,l] , wh<ch has some very

attractive properties and which , for A=0.5 , can model a connective "and/or" .

2) Hints for a comparison of these multivalout logics :

Some interesting points of view for a comparison are :
(1)

- Is Plaget' s group kept ? It is always the case : for example , with the

implication number 4 , but it is kept with implications number 1 and 2 .

1 . Let 0 be a prepositional variable containing elementary propositions P,Q,R,...
joined with logical connectives . 0 is a wff symbolically written 0 = f(P,Q,R,...).
Four transformations can be defined on 0 :

1) identity 1(C) = 0 ; 2) negation N(0) = ^8 ; 3) converse R(0) = f(*J,«iQf ...h
4) correlation C(0) = -»R(0) .

Thor»,' transformations ,for function compositional law , have a Klein group structure
whose table is : (see bottom of the next page)

IS!

- associated set theory :

For example , the Inclusion associated with implication 1 Is :

A c B •» max(1 - m (u) , m (u)) 2 8.5 V ucU .
A 6

the inclusion which corresponds to implication 2 is the classical definition

introduced by Zadeh :

A c B « m (u) £ m (u) V ucU .
A B

- transitivity of implications :

For example , implication 1 satisfy :

v(P-(Q-R)) = V((PAQ)-R)

but 2 does not .

- nodus ponens :

The modus ponens rule allows Q to be inferred from P and P-»Q in propositional

calculus . In multivalent logics the problem is to compute v(Q) given v(P) and

v(P-*Q) . Many authors [15] have looked for a detachment operation * such that :

v(P)*v(P-Q) <, v(Q)

to have v(Q) as large as possible . Some of them have proposed "min" for * , others

the product . Wit'. v(P-Q)= max(1 - v(P) ,v(Q)) , if min(v(p) ,v(P-Q)) i. 8.5

then min(v(P) , v(P-*Q)) £ v(Q) <. max(v{P) , v(P-»Q)) . Here , * = min and the

validity of a chain of implications is equal to the validity of the least valid

I I 1 N | R I C 1
—1—
I I I N 1 R | C |

N | N I 1 C | R |

R | R C s I \ N |

C | c R 1 N | I |

Piaget [213 established that , for children , learning of human reasoning demands a
perception of these transformations that is to understand the difference between
sentences such as :
"Good poets are bad husbands"
"Good poets are not bad husbands"
"Bad poets are good husbands"
"Bad poets are not good husbands"

185

implication in the chain . With * = . , the validity decreases with the length

of the chain (with implication 5 v(P).v(P-*Q) i. v(Q)) .

In Dienes-Rcscher logic , if P is called a tautology as soon as v(P) t Ö.5 , then

every theorem of the standard propositional calculus is a tautology in this logic

[16] »[5] . Gaines [11] has shown that , in some sense , Dienes-Rescher logic

was a fu2zification of the standard propositional calculus .

With v(P-Q) = min(1,1- v(P) + v(Q)) ,

if v(P) = a and v(P-»Q) = 1 , then v(Q) 2» a

if v(P) = a and v(P-»Q) = 1 - c < 1 , then v(Q) = a - c .

At the end of n inferences whose truth values are equal to l-c , the truth value of

the premise being a , the conclusion has a truth value equal to a-nc .

AR6

3. GENERALIZED MODUS PONENS :

a) The problem :

In the precedent section , we were interested in manipulating statements as

(1) P s "u « A" where A is a fuzzy subset on U and v(P) = m (u) (for example
A

"u is a tall man").

In this section , we consider statements as :

(2) P s "X is A" where A is a fuzzy subset on U which induces a possibility

distribution n = A (for example 1n "X 1 tall* , "tall" is a fuzzy subset on the
X

universe of heights) . In fact , this statement can be viewed as equivalent to an

infinity of statements p s "u is the height of X" with v(p) e m (u) , V ucU .
A

For performing approximate reasoning with such statements as (2) , we need new

modifier rules and new rules of inference .

b)Modifier rules :

* introduced by Zacleh [32] , [33])

If a modifier M (e.g. "not" , "very" , "more or less") is modelled by a function

2 8.5
f (e.g. 1 -(.)»(•) ,()) then M(P) has a possibility distribution f(n) where w

is the possibility distribution associated with the statement P .

Examples :

M("X is A") - "X is M[A] .

M("X is A and Y is B°) - "(X.Y) is M[A.B]

where A.B is the joint of the fuzzy subsets A and B on U and V :

m (u,v) 8 min(m (u) fm (v))
A.B A B

c) Rules of inference :

The three following ones have been proposed by Bellman & Zadeh [2] ,[32] .

- the projection principle : Let w = A a possibility distribution on
(XI Xn)

the cartesian pn.duct of universes 111 .11? Un . n can be restricted on the

subset 111 Us of 111 Un in two ways : either in fixing the "values* of

Xs+1 Xn (conditional possibility distribution) or by projecting « on

UI tls , taking the maximum value of ti over Us+1 Un (marginal possibility

distribution) . Reciprocally it can be extended to Ul Un by cylindri
(XI Xn)

cal extension , i.e. it has the sane values as n Independently
(XI Xn) (XI Xm)

of the values of Xm*l Xn .

- the partieularizatIon of n « A is the modification resulting from the
(XI Xn)

stipulation that the possibility distribution ti is B . The result Is
(XI Xm)

A n B whete Ä and B are the cylindrical extension of A and B on a common universe

Ul ill of which Ul Un and Ul Urn are subsets .

- the f»n tail merit principle :

from it = A , we can infer »t s B V B o A .
(XI,.. ,Xn) (Xl,...,Xn)

What is called compositional rule of inference results of the application of both

particulari«at ion and projection principles :

from n = A and n = B , we infer tt » A o B where o denotes
0:,Y) (Y,Z) (X,Z)

the max-min composition :

m (u,w) = max min(m (u,v),m (v,w))
AoB v A B

a fuzzy subset oa a cartesian product of universes is called a fuzzy relation

between these universes . What is called generalized poneus is a particular case

ot the compositional rule of inference where form it = A' and it = R , we infer
X (X.Y)

it = A' o R . let us study now ,roore particularly , this generalized modus ponens
Y

•— which is a kind of interpolation .

c) Generali/ed modus ponens :

it * V. models here some fuzzy causality relation between fuzzy subsets of U and
(X.Y)

183

V . Practically the problem is to build R from a rule such as "If X is A , then Y 1s

B" where A and B are fuzzy subsets of U and V (e.g. A = "small" , B = "large" , U

and V are some intervals of the real line appropriate to the nature of X and Y) .

We have n =f(m , m) , where the question is what can we use for f ?
R A B

- we can use any of the implications introduced in section 2 .

e.g . m (u,v) = min(1 ,1 - m (u) + m (v))
R AB

- mainly in practical applications , a lot of authors use more simply the joint

of A and B : m (u,v) = min(m (u) , m (v))
k AB

If we denote by Ri the fuzzy relation built from implication number 1 , we neve

the following result :

if m (v) c [0.5,1] , then
B

m (u,v) £ m (u,v) * m (u,v) 2: m (u,v) * m (u,v) * min(m (u),m (v))
R3 R2 R5 Rl R4 AB

If B'1 = A'o Ri , the same inequalities hold for m (v) . The "largest" B» 1 ,
B'i

the "fuzziest" the result .

Some particular cases are interesting : [12]

A*= A , then m (v) k m (v) , V v ; but B* coincides with B for the highest
B* i B

membership elements . Thus in approximate reasoning , generalized modus ponens

provides more valid conclusions than standard modus ponens , for any Ri or the

joint .

A rather funny particular case of modus ponens is the well-known rule of three .

The classical rule is : If X is equal to a , and when X is equal to a , Y is equal

to p , then Y is equal to ap/a . But this rule can be extended v/ith fuzzy numbers

(i.e. convex anc. normalized fuzzy set of the real line) namely a , a , p --A

nodels a number whose value is around x ; then b = a»(p'/.a) where «• and % denotes

the extended multiplication and division (see [4] , [6]) ;

Here m (ufv) = m (v/u) and we have aoR = a»(p%a)
R p%a

18?

19.B« : Very recently , Di«,! [3] has proposed another way to build R from

"If X is A , then Y is BH as :

I max(1 - m (u) , m (v)) if m (u) a m (v)
ro (u,v) =| AB AB

R l mtn(I - m (u) , m (v)) if n (ti) > in (v)
i AB AB

This method has some very attractive properties .

More generally , practical car.es involve several rules :

"X is A"

•If X is Al , then Y is Bl"

"If X is An , then Y is Bn*

then B = A o max (Rl Rh) .

I Some interesting questions , which are not completely solved yet , are linked to

this problem :

- consistency of the rules [3]

- non-redundancy between the rules

- given R , extract rules (see Tong [28]) .

190

4. FUZZY-VALUED LOGICS :

In all the considerations of the sections 2 and 3 , we have worked with ordinary

fuzzy sets -- it is to say that the membership values were real numbers of [8,1] .

Most of these works can be also performed in a similar , but generally more diffi_

cult way , with what is called fuzzy sets of type 2", i.e. fuzzy sets whose

membership values are fuzzy subsets of [8,1] (generally fuzzy numbers) . I will

just point out some features of these fuzzy-valued logics .

Warning : In the following paragraph , A , B are fuzzy sets of type 1 of [0,1] .

By means of Zadeh extension principle , the ordinary operation "win" and "max,; on
(1)

type 1 can be extended to the fuzzy subsets of type 2 . Negation operation "1 - ."

can be extended in the same way in "1 • ." ; m (u) = m (1-u) , 1 - A is the
1-A A

antonym of A . max and min denotes the extension of max and min . The practical

rule of construction of max(A.B) and of min(A.B) is : take the left most part for

the min and the right most part for the max of the pair of the increasing parts

of A and B ,do the same for the decreasing parts . max and min are commutative

associative , Idempotent , distributive on each other , and verify De Morgan's law

and absorption law .

So there is no problem to compute the truth value of the conjunction and of the

disjunction of two propositions whose truth values are fuzzy sets of [8,1] , i.e.

quasi linguistic because we can model truth values as "truth" , "false" , "very

truth" , "borderline" as fuzzy sets of [8,1] .

Generalized modus ponens can be also extended by means of a max min composition :

m (v) = max min (m (u) , m (u,v))
AoR v AR

n. (v) , m (u) , m (u,v) are here fuzzy subsets of [8,1] , and AoR , A ,R are fuzzy
AoR A R

subsets of type 2 of V ,U , U V .

1. A bihory operation * on real numbers is extended to fuzzy subsets A and B of the
real lino by the formula :

m (w) = max min(m (u),m (v))
A*B w=u*v A ß

191

CONCLUDING RLMARKS :

I hove not spoken of all the existing topics in fuzzy logics . I must mention still

- the works in switching logic by Kandel [14] and many others about the canonical

form of a fuzzy expression involving nax and min (extension of the ninimization

of a boolean function).

- fuzzy first order logic .

- the works by Shotch [26] or by Vaina [29] in fuzzy modal logic . Schotch has

introduced an intermediary modal operator between the ordinary possibility and

necessity operators which models : "it might be possible that" .

- in the precedent development , we consider for statements only truth values .

Zadeh [32] ,[33] has proposed also to work with probabilistic values or even

possibil istic values (which are modelled by subintervals of [0,1] , i.e. 0-fuzzy

sets) . Sanchez [23] has introduced a modus ponens for possibility-valued

statements ,

Fuzzy logics has already been used In a lot of applications . I can quote ,

for examples :

- use of heuristic rules , modelled as a union of fuzzy relations in order to

define a linguistic controler (see Mamdani [19])

- (medical) diagnosis (see Sanchez [24})

- in artificial intelligence , the language FUZZY , defined and Implemented by

LeFaivre [17] ,[18] to manipulate approximate knowledge .

I will conclude by saying that there is no universal or even canonical way for

building fuzzy logics . Practical applications will winnow the chaff from the

grain .

192

REFERENCES :

1.Bellman R.E., Giertz M.:"On the analytic formalism of the theory of fuzzy sets"

Information and Sciences vol 5 pp 149-156 . 1973 .

2.Bel Imam R.E. , 2adeh L.A. :"Local and fuzzy logics" International Symposium

on Multivalued Logic .Indiana . Hay 1975 . 83 p .

3.Diaz Muchio :Pr.Zadeh*s seminar . Berkeley . 5/9/78 .

4.Dubois Didier & Prade Henri :" Operations on Fuzzy Numbers " To be

published 1n The Int.J.or Systems Science . 1978 .

5.Dubois Didier & Prade Henri "Fuzzy Logics and Fuzzy Control ." Submitted to

The Int.J.of Man-Machine Studies .

6-Dubois Didier & Prade Henri :" Fuzzy Real Algebra : Some Results "

Purdue University Memorandum TR-EE 78-13 Part A .1978 .

7.0ubois Didier & Prade Henri :" Operations in a Fuzzy-Valued Logic ." (21 p)

Purdue University Memorandum TR-EE 78-13 ,Part D . Feb.1978 .

B.Dubois Didier & Prade Henri :"Comment on "Theory of Fuzzy Sets","Fuzzy Sets as

a Basis for a Theory of Possibility","A Theory of Approximate Reasoning"&"PRUF-A

Meaning Representation Language for Natural Languages" by L.A.ZADEH ." (20 p)

Purdue University Memorandum TR-EE 78-13 ,Part E . Feb.1978 .

9.Dubois Didier & Prade Henri r" An Alternative Fuzzy Logic ." (12 p) Purdue

University Memorandum TR-EE 78-13 .Part F . Feb.1978 .

10.Fung L.W., Fu K.S.:"An axiomatic approach to rational decision making in a fuzzy

environment" in Fuzzy Sets and their Applications to Cognitive and Decision

Processes edited by Zadeh ,Fu ,Tanaka »Shimura .Academic Press 1975 pp 227-255 .

ll.Gaines B.R. :"Foundations of fuzzy reasoning" Inter. 0. Man-Machine Stu. vol 8

pp 623-668 . 1976 .

12. Giles R. :"Lukasiewicz logic and fuzzy set theory " Inter. J. Han-Machine

Stu. vol 8 pp 327-373 . 1976 .

13. Goguen J.A.:"The logic of inexact concepts" Synthese vol 19 pp 325-373 . 1968

14. Kandel A. :"0n minimization of fuzzy functions" I.E.E.E. Trans, on Comp.

vol C-22 n 9 pp 826-832 . 1973 .

193

15.Robert Kling :"Fuzzy-PLAHNER : Reasoning with Inexact Concepts in a Procedural

Problem-Solving language .* 0. of Cybernetics vol 4 n I . 1974 . pp 105-122

First version in vol 3 n 4 . 1973 .

16.Richard C.T.Lee : "Fuzzy logic and the Resolution Principle .* J. of ACM vol 19

n 1 . pp 109-119 . 1972 .

17.Richard A.LeFaivre : "The Representation of Fuzzy Knowledge ." 0. of Cybernetics

vol 4 n 2 . pp 57-66 . 1974 .

18.Richard A.teFaivre : "Fuzzy Problem Solving ." PhD Thesis Univ.of Wisconsin .

1974 . 187 p .

19.E.H.Mamdani : "Applications of Fuzzy Set Theory to Control System ." in "Fuzzy

Autonata and Decision Processes" Edited by M.M.Gupta , G.M.Saridis , B.R.Gaines .

North Holland . 1977 . pp 77-88 .

20.Maydole R.E.: "Paradoxe? and many valued set theory" O.of Phi To. Logic vol 4

pp 269-291 .1975 .

21.[Pinget] Hermine Sinclair "Piagef s theory of development : the main stages"

pp 68 -78 in "Critical features cf Piaget's theory of the development of thought"

ed. by F.B.Murray . 1972 . Unl.er.of Delaware .

22. Rescher N.:"3any valued logic" New York Mac Gra4iill .1969 .

23. Sanchez Elie : "On possibility qualifications in natural languages" memo.

UCB/ERL M77/28 . 1977 .

24. Sanchez Elic : "Solution«; in composite fuzzy relations equations applications

to medical diagnosis in brouwerian logic " pp221-234 in Fuzzy Automata and Decision

Processes ed. by Gupta , Saridis , Gaines . North Holland , 1977 .

25. Shafer Glenn :"A mathematical theory of evidence* Princeton University Press

297 p . 1976.

26. Schoten Peter K.:"Fuzzy modal logic" Proc. of the Int. Symp. on Multiple-

Valued Logic . I.E.E.E. 1975 . pp 176 -182 .

27. Sugcno M.: "Theory of fuzzy integrals and its applications" Thesis Tokyo

Institute of Technology 124 p . 1974 .

28. long R.M.: "Analysis of fuzzy control algorithms using the relation matrix"

194

Int. 0. Han-Machine 5tu. vol 8 pp 679-696 . 1976

29. Valna L. : "Semiotics of «with" ". To be published .

30. Zadeh Lotri A. : »Fuzzy Sets ." Inf.& Cont. vol 8 pp 338-353 . 1965 .

31. Zadeh Lotfi A. : "Fuzzy sets as a basis for a theory of possibility,

memo. UCB/ERL M77-12 . 1977 .

3?. Zadeh Lotfi A. : "A theory of apprcximate reasoning" memo. UCB/ERL (177-58

1977.

33. Zadeh Lotfi A. : "PRÜF- A Meaning Representation Language for Natural Languages

UCB ERL Memo. M77/61 . 1977 .

195

HUM

i •

Part 11

Four Models for the Description of Systems

by

S. Cushing

\96

FOUR MODELS FOR THE DESCRIPTION OF SYSTEMS

In this report we compare the expressive power and perspicuity of four notational

frameworks for the specification and definition of systems and requirements.

The control maps of Hamilton and Zeldin (1976c), the R-Nets of Al ford et al.

(1977), the commutative diagrams of mathematical category theory (Arbib and

Manes, 1975), and a modified version of the R-Net framework are reviewed and

the relationships among them discussed. The relative merits of the four frar.«j-

works along the two dimensions of expressive capacity and clarity or convenience

of use are evaluated, and recommendations are made for the conditions under which

each framework might profitably be used.

1. REVIEW OF CATEGORY-THEORETIC RESULTS ABOUT HOS

Cushing (1978a) analyzes the three primitive control structures of Higher Order

Software (HOS) in terms of the arrow language of mathematical category theory

and proves the following theorems:

Theorem 1: HOS composition is identical to category-theoretic composi-
tion, as far as the mappings involved are concerned.

Theorem 2: HOS set-partition and class-partition are category-theoretic
duals, in that the commutative diagrams they imply differ
only in the directions of corresponding arrows.

The proof of Theoreu 1 is trivial, and the proof of Theorem 2 involves showing

that the commutative diagrams implied by set-partition and class-partition are

identical, with one minor difference in each case, to those used in category

theory to define the coproduct and product, respectively, of two sets. The sin-

gle minor difference involved is a reflection of the fact that the category-

theoretic diagrams Are used to define ways of combining sets, while the HOS-

implied diagrams are used to define ways of combining functions; it has no im-

pact at all on the proof of Theorem 2.

These considerations motivate the following three definitions:

Definition 1: Let f, g, and h be functions such that f is the parent
in an HOS composition in which g and h, in that order, are
the offspring. Then f is said to be the (functional)
composition of g and h.

Definition 2: Let f, g, and h be functions such that f is the parent in
an HOS set-partition in which g and h are the offspring.
Then f is said to be the (functional) coproduct of g and h,

Definition 3: Let f, g, and h be functions such that f is the parent in
an HOS class-partition in which g and h are the offspring.
Then f is said to be the (functional) product of g and h.

Note that the order of g and h is crucial in Definition 1, but does not matter

in Definitions 2 or 3. This fact follows from the symmetry of each of the co-

product and product diaarams and the asymmetry of the composition diagram. The

»B^^,.-.

definitions, like the primitive control structures themselves, can be generalized

in a straightforward manner to include cases in which more than two offspring

are involved.

f

199

•fc .- -

2. FUNCTIONS AND CONTROL STRUCTURES IN REQUIREMENTS NETWORKS (R-NETS)

The Software Requirements Engineering Methodology (SREM) is an "integrated,

structured approach to requirements engineering activities" (p. 1-1) developed

by Al ford et al. (1977). On the face of it, SREM seems to share many features

with HOS: it "begins with the translation and decomposition of system level

requirements; performs analysis, definition, and validation of the software

requirements; and ends with documentation of the software requirements..."

(p. 1-1). It includes "a set of software support tools...to automate many of

the previously manual activities associated with requirements engineering,"

including a "structured, formal Requirements Specification Language (RSL)."

The role played by control maps in H0S--i.e., the description of data and control

relationships—is played in SREM by what are called requirements networks or

R-Nets. An R-Net represents

the order of logical processing steps that must be performed.
An R-Net may contain Ands, Ors, and For Each Nodes; it must be
enabled and terminated. The processing steps are alphas or sub-
nets which may be expanded into lower levels of detail. An
R-Net may also contain validation-points . events, and interfaces
(p. 0-14).

An alpha, in this definition, is "a processing step in the functional require-

ments domain" (p. D-2), and a subnet represents "the order of logical processing

steps that must be performed in order to perform the requirements of the pro-

cessing step that represents it at the next higher-level" (p. D-16). A valida-

tion-point is "a logical point in the processing at which timing, value, or

presence data must be obtainable in the real time software in order to validate

that the requirements have been fulfilled" (p. D-21), and an event is "an identi-

fied point that exists in the processing of one or more R-Nets or subnets and

which may cause the enablement of an R-Net" (p. D-7). Interfaces are of two

kinds: an input-interface is "a 'port' between the data processing system and

the rest of the BMD system which accepts data from the other system (e.g., the

Strictly speaking, data flow is not explicitly indicated on an R-Net, but it
seems to be deducible from the information that is explicitly represented,
as we will see.

200

11

radar-returns)" (p. D-9); an output-interface is "a 'port' between the data

processing system and the rest of the BMD system which transmits <iata to the

other system (e.g., the radar-commands)" (p. D-12).

A sample R-Net, containing each of these basic elements and some others, is

exhibited in Figure 1 (p. D-34). To determine the relationship between this

R-Net and the H05 control map for the same system, we have to ask how the

system represented in the R-Net could be expressed explicitly in terms of data

types, functions, and control structures. Since the data types in this example
2

are not explicitly specified in the figure , we will ignore them for the time

being and concentrate for now entirely on the functions and control structures

that do, it seems, appear in the R-Net.

The first thing we notice is that some of the elements of the R-Net become super-

fluous, when viewed in terms of HOS. The R-Net Start, Terminate, and Input-

and Output-Interface elements are all unnecessary, because the notions they

represent are implicit in the conventional notation for a function. In the

control map

(yry2)
= f(xi»x2^

y2
s g(x2)

for example, we know automatically that the function starts being evaluated

as soon as the inputs x, and x« are available and terminates as soon as the

outputs y« and y« are available. Nothing further need be said about starting

or terminating the processing of the system. We also need say nothing about

whether inputs come from or outputs go to other parts of the data processing

system or other parts of the BMD system, because this will be clear from the

input-output relationships represented in the complete BMD control map. In-

puts come from wherever they are produced as outputs, and outputs go to wherever

2
See Footnote 1.

201
"*•""""*"*•-—•T.Mri —lp| '"">* " '^""^OWWWMBWBWgWWWI

-R NET START

INPUT INTERFACE.

VALIDATION POINT

JMAGE
s^ ENTITY SELECTION

FOR EACH

SUBNET »

"CONSIDER OR"

STATUS

NOT READY

OR" REJOIN

-"AND" REJOIN

EVENT

TERMINATE

OUTPUT INTERFACE

Ftoure 1: Sample R-Net Structure in Graphical Form

202

asao:

they are used as inputs. Output and input are relative notions and, again,

nothing further need be said on the matter (given the complete control map).

The functions represented in the R-Net clearly include the alphas—A, B, D, E,

F, G, H, and J—, but they also include the Validation Point VI, the Entity

Selection S, the Subnet C, and the Event Q. Each of these performs a function,

• in the mathematical sense, and thus would be represented as a function in HOS.

The Validation Point, for example, really just denotes a test, which can be

represented in HOS as a set partition or coproduct (Definition 2); the Subnet,

similarly, can be written as a control map in itself, since, whatever its

• internal structure may be, its overall effect is to evaluate a function.

The control structures represented in the R-Net include sequential flow, de-

noted by "->", and, denoted by "&", or, denoted by H+", and for each, denoted

* by "For Each" in the figure. Consider or in the figure can be subsumed under

or, for our present purposes, and, as we will see in Section 4, we can also

ignore the for each node. Finally, v/e will incorporate VI, A, and S into a

single function, denoted by "A", since they are all joined sequentially by
1 • "->" and thus form a single composed function in the mathematical sense.

This gives us the skeletal R-Net structure exhibited in Figure 2, in which all

of the simplifications we have just discussed here have been made and only the

* functions and control structures that appear explicitly in the R-Net are shown.

The first thing we notice about this skeletal R-Net structure, which still con-

tains, it must be emphasized, all of the essential mathematical components of

the original R-Net (except the Tor Each node), is that the HOS notion of level

of decomposition (Hamilton and Zeldin, 1976a) is nowhere to be seen. The sort

of level that we saw mentioned above in the definition of subnet corresponds

roughly to the HOS notion of layer, which we will not discuss here (but see

Hamilton and Zeldin, 1976b,1977a,b). One purpose of HOS decomposition levels,

as opposed to layers, is to make explicit the full set of structural relation-

ships that hold among all of the functions that get performed by a system.

Higher-level functions get performed precisely by requiring their lower-level
1 functions to get performed instead, a form of delegating responsibility, so to

k**# 203
WWMW M --l»-!-*«!

Figure 2: Skeletal,.Structure of Sample R-Net Showjng
pn1> Explicit..Junctipns_tr)4 Control Structures

204

----- •- • -• •• •••- •

speak, to use a convenient anthropomorphic metaphor (Gushing, 197/, 1978b).

Lower-level functions, in turn, get themselves performed precisely in order to

fulfill the requirements set by their higher-level functions. This relative

notion of requirements bears some stressing, because it seems that the idea of

requirements becomes hopelessly confusing and unintelligible without it. To

use a simplified example (see Figure 3), the manager's specifications--i.e.,

his instructions—become the programmer's requirements; the programmer's

specifications--i.e., his program--become the compiler's requirements; the

compiler's specifications—i.e., the machine code it produces--become the com-

puter's requirements; and the computer's specifications become part of someone

else's requirements, depending on the circumstances. It is for this reason

that HOS uses the same language and formalism for representing both specifica-

tions and requirements; the distinction between the two notions is not an ab-

solute, but a relative one, depending entirely on one's point of view in a given

context.

In Figure 2, for example, each of A and B performs a function, but so does their

joint action. This higher-level function is their composition, in the sense of

Definition 1, but is nowhere to be seen (explicitly) in Figure 2. Each of E

and F performs a function, but so does their joint action, i.e., their co-

product, in the sense of Definition 2. The latter, higher-level function,

however, is again nowhere indicated, as an actual function existing in its

own right, in the R-Net structure of Figure 2. These two higher-level func-

tions, furthermore, also combine, according to the diagram, to form a still

higher-level function: the product of the composition of A and B and the co-

product of E and F. Again, one would never suspect that this function was

present, as an existing function requiring to be performed, just from the in-

formation in the R~Net, because higher-level functions are not indicated ex-

plicitly in such diagrams.

We can incorporate these higher levels into an R-Net structure by determining

what higher-level functions are involved and drawing boxes around them, just as

there are boxes around the explicitly appearing functions, in this case, A, B,

C, D, E, F, G, H, J, and Q. In the case of Figure 2, we have already determined

. that these higher-level functions include the composition of B and C, the co-

product of E and F, and the product of this co .position and this coproduct.

205

--«•»

no

o

M
AN

AG
ER

—
*R

^-
*W

•
y^

s0
tt

--
4^

^
/7

^
sv

^
s^ft,

"H
*i

i

PR
O

G
RA

M
S

R
C

O
U

Pt
IE

R

—
)s

pu
~~

*i
k

M
AC

H
IN

E

E
B

g

o
 D

 O

1 =
*
*
*
•

*
•

»

Jj
O

fj
J

S
ol

id
 A

rr
ow

(•
••

•

 >

)
de

no
te

s
pe

rf
o-

m
an

ce
 o

f
fu

n
ct

io
n

 (
p

ro
ce

ss
in

g
st

ep
):

 a

ct
u

al

ch
an

ge

fr
on

in
pu

t
da

ta

to
 o

ut
pu

t
da

ta

D
as

he
d

A
rr

ow

(—

•
»

de

no
te

s
tr

an
si

ti
on

 b
et

w
ee

n
p

oi
n

ts
 o

f
vi

ew
:

ch

an
ge
 o

n
ly

in
_

st
at

u
s

fr
om

 s
p

ec
if

ic
a

ti
o

n
s

to

re
qu

ir
em

en
ts

F
ig

ur
e

3:

E

ac
h

C
om

po
ne

nt
 o

f
«

Sy
st

em
 P

ro
du

ce
s

S
p

ec
if

ic
at

io
n

s
fr

om
S

^
^

*?
"

*"
^

.:

 O

we
 C

om
po

ne
nt

's

S
p

ec
if

ic
at

io
n

s
Ar

e
th

e
N

ex
t

C
om

po
ne

nt
's

Re
qu

ir
em

en
ts

It is also easy to see that this R-Net contains, as well, the product of H and

J; the coproduct of G, this product, and Q; and the composition of A and each of

the highest-level functions we have determined so far. If we draw boxes, as

suggested, around each of these higher-level functions, and assign each new box

a name, denoting the higher-level function the box represents, we get the dia-

gram exhibited in Figure 4. Note that the system as a whole contains five levels

of box embedding, which correspond to five levels of decomposition in an HOS

control map.

i(

f«}jrtt: V«l?t»l Sti^CtMr* oM*»j>1* »-Ntt Snowing «U

207

3 • R_-MLS_ MD CONTROL MAPS

We are now in a position to translate the R-Net structure into a control map.

The process is, at this point, fairly simple and mechanical, but going through

the steps graphically should help to put the relationship between the two sys-

tems notations into sharper relief. First we have to make certain that each

+ and & control structure receives a complete graphic description, in the sense

that each such node is correlated with a matching Rejoin node. The only nodes

in Figure 4 that are incomplete, in this sense, are those corresponding to f^

and fß, and completing them results in the diagram of Figure 5. The dotted

circles are included only to identify the added Rejoin nodes and have no fur-

ther significance. Note also that a new sequential flow arrow has had to be

added to connect these new nodes.

Now that we have guaranteed that eyery + and & node is graphically complete, by

adding the necessary Rejoin nodes, we reverse ourselves and eliminate the re-

dundancy involved in having two nodes for each control structure. Physically,

this means moving each + or & node and its matching Rejoin node toward each

other until they meet and then merging them into a single node. This process

results, in this case, in the diagram exhibited in Figure 6. Note that each &

and + node is connected now to the relevant boxes by lines, rather than arrows,

since no flow is involved in & or + themselves. It is part of the meaning of

"&", in other words, that both the f- function and the f& function, for example,

get performed, and it is part of the meaning of "+", similarly, that either E

or F, for example, get performed. Flow occurs only where the arrows actually

appear now: from B to C in f-, from D to f7 in f&, and so on. Note also that the

graphical complication resulting from the fact that the + node in f3 connects

three, rather than two, boxes is entirely one of how best to

draw the graph, not one of the functions or control structures themselves.

The diagram in Figure 6, like the original simplified R-Net structure in

Figure 2, says that first we perform function A, then both function B followed

by function C and function D followed by either function E or function F, and

then either function G, both function H and function J, or function Q. It also

contains, however, the higher-level structures that relate these functions, and

203

Figure *: Skeletal Structurejo/ Sample.R-Net with^AJJ. Control Structures .Completed

209

"r

L

 s_

 0 ___.

u

[i] s

(
r. — - —-9-

[D- -G>—
— -0"
HIT]

— _ -—

ftqur« ft: Stele*... •»-•»ei Strip turr wU» «-Mlundant Node, !ttr»ln«tH

Fl'iuri. T ..tpl.-i.i_ *"•«• *.lrwl..'V U»ti.»tr,i h, W'J)"1'-.•'V.-* .'.••'-"

210
__________ WfrW*«MHMI

it embodies all of this information without the redundancy of duplicate nodes

for & and + control structures.

The next step is to turn the diagram on its side. If we take the diagram in

Figure 6 and rotate it clockwise ninety degrees, we end up with the diagram in

Figure 7 (with the labels suitably relocated). The reason for this reorienta-

tion is that it places the various functions involved more in line with where

they will appear in the final control map.

Having now reoriented the diagram as a whole, the next thing we do is to re-

arrange each box internally, so that each function and control structure is

located at the top center of its box. Each higher-level box should then have

the internal structure

as indicated in Figure 8.

By now it should be perfectly clear what is going on, because the control map is

virtually staring us in the face. Only two more steps, in fact, are necessary to

get the overall functional structure of the control map from the diagram in

Figure 8. First we connect each function name by a straight line to the boxes

that occur with it in its own box, and then we erase the borders of the boxes

themselves. The first step results in the diagram in Figure 9, and the second

step results in the diagram in Figure 10.

As we have observed in connection with Figure 6, Figure 10 also contains all of

the information about functions and control that is contained in Figure 2, plus

the additional information about higher-level functions that HOS shows it is

necessary to include. The overall function that is performed by the system,

according to Figure 10, is f,, which consists of A followed by f« followed by f*.

211

%0mf>WlMf'* ff,'^"^"»"WMi vpwmofflMH

'1

•

'4

t

o e
j H

__

r

<7
*

C

fi•.r«> A ttfJrl-l *M yf.tft|.r. »i.1. .y«ff»o.i>f»..t •-n*.t-*->22«.t*f »_*».'

M-lurf ') B.*.r|.J Slptml ü,.r.1. *'.'."."".". "'.'.h H°'' l?".,.'r'1 Vi".»*_*'*l!fd

212

""V-" x a—acBesgSZSS

Function f2 is performed by performing both f., which consists of function B

followed by function C, and fc, which consists of function D followed by o
function 7, i.e., either function E or function F. Performing f~, in turn,

means performing either function 6, function fg, which consists of both func-

tion H and function J, or function Q, All of this information can be squeezed out

of the R-Net structure, exactly as we have done here, but it is not included

explicitly in the R-Net structure itself.

One reason we want this information to be included in the graphical representa-

tions of systems is, among other things, that it makes possible *he formulation

of principles that guarantee the correctness of interfaces, namely, the six HOS

axioms (Hamilton and Zeldin 1974, 1976c). Higher-level functions are not rep-

resented in R-Nets because they do not entail any processing beyond that involved

in the lowest-level functions that make them up (Alford, personal communication).

"A Requirements Net, or R-Net", after all, "is used to describe the required flow

of processing in response to a single stimulus which enables the net" (p.3-19).

The problem with this, however, is that we have to recognize higher-level func-

tional structure in order to get the relationships among processing steps

straight.

This is a familiar situation in science. Such forces as gravity and such entities

as electrons were first posited in physics not because they were directly observed,

but because the behavior of matter that was observed could not be explained readily

without them. Only by stepping back from the hard data and constructing abstract

theories was it possible to make sense out of the data themselves. Here, simi-

larly, the bottom line that we are interested in is the processing steps that

actually get performed by the system. One of the main things we want to know

about these processing steps, however, is whether their interfaces are correct,

since, if they are not, the system will ultimately fail. Just as the positing

of gravitation and electrons in physics enables us to explain important aspects

of matter behavior, the explicit recognition of higher levels of functional

structure enables us to solve this crucial problem of data processing. Once a

system is specified in control map form, the six HOS axioms tell us which inter-

faces are correct, which are not correct, and how to fix the latter. The inter-

faces among the terminal nodes of a control map tree are correct, if (and only

if) the interfaces among all the nodes in the tree are correct. Even if we are

213

" TmitiiMann—i—ir iTfn " JWTO

interested, in other words, only in the functions that actually constitute

processing steps, we still have to work out their higher-level functional

structure in order to check that these lowest-level functions are actually

interacting the way they should.

A second reason for requiring an adequate notational framework to provide a

way of representing higher-level functional structure is that this makes possi-

ble the formulation of a notion of abstract control structure, which, in turn,

enables us to go well beyond the complexity of systems that can be given simple

descriptions entirely in terms of &, +, and -•. An abstract control structure,

in essence, is simply the relationship among functions that is represented by

a control map in which one or more of the nodes is left variable (see Hamilton

and Zeldin, 1976c). Once such a structure has been defined, we can use it to

simplify control maps considerably by using its name in place of the portion

of the control map that defines it. Depending on the complexity of the ab-

stract control structures we bother to define, some extremely complex systems

can be given very simple descriptions. What makes all of this possible, how-

ever, is precisely the ability to represent higher-level functional structure

that control maps provide us with.

He can make the tree structure in Figure 10 look even more like the customary

HOS control map by replacing "&", "+" and "-•" with their approximate HOS equiv-

alents, respectively, "INCLUDE", "OR", and "JOIN". If we adopt the convention

that "JOIN" denotes right-to-left flow, this gives us the diaqram in Figure 11.

As Cushing (1978a) points out, furthermore, control flow in a control map is

given automatically by the specification of data flow, as long as only primi-

tive control structures are involved, so the names of the control structures

are superfluous in that case, from a theoretical point of view, once data flow

has been indicated. Control structure names are useful in practice, however,

because the name of a control structure serves as a check on whether the spec-

ified data flow is allowable or not, given a library of pre-defined control

structures. This becomes especially important when abstract control structures

3 . *"*
"&", "+", and "V seem actually to correspond to the non-primitive HOS control

structures COINCLUDE, COOR, and COJOIM, but this difference need not distract us
here. Lack of explicit data flow specification in R-Nets makes strict compari-
son with control maps only approximate in any case. See note 1.

215

«*

=

I'«

are introduced and the library of control structures grows beyond the three

primitives.

Let us now introduce data flow into the skeletal control map structure of

Figure 11 to see exactly how this relationship between data and control flow

emerges. The first function that gets performed in the system, other than the

overall system function f, itself, is A, so we know that it is function A, on

this level, that gets the system input data itself as its input. We will denote

this input data by the symbol "input-list" to indicate that more than one vari-

able is likely to be involved. We also know that it is the output of A that

gets used as input to f2 and the output of f« that gets input to f3, because of

the very meaning of "JOIN" (or of "•**), and our convention on right-to-left

flow. Function f3, furthermore, is the function on this level that produces

the system output data as its output, since it is f3 that completes the decom-

position of f,, once A and f„ are given. We will call this data "output-list",

since, again, more than one variable is most likely to be involved. This gives

us the partial control map exhibited in Figure 12 as a description of data and

control flow on the top two levels of our control map. Note the name "local-

data", which we will use, with primes, to indicate data that gets used only

within the system described by this control map.

Next we observe that f~ gets performed by performing both f. and f^, so the

list of variables that is input to f« must be partitioned between the input

of f* and the input of f5, and the output of f? must be divided between the

output of f- and the output of f&. Since f« inputs local-data, we call the

inputs to f* and f5, respectively, "local-data?" and "local-data,", indicating

that the variables in these two lists collectively form the full set of vari-
4

ables in local data. Similarly, since f~ outputs local-data', we will call

the outputs of f* and f&, respectively, "local-data«'" and "local-data,
1", for

essentially the same reason. Since f, is the composition of B and C, we I now

that the input of B must be the same as that of f4 - namely, local-data2 -

The present author prefers to subscript functions in a control map from right
to left, but data from lei't m ,right. There is no theoretical significance to
this convention, and no confusion should arise, as long as it is understood and
kept in mind. Actually, the convention is useful psychologically to undermine
the erroneous notion that function and data subscripts must be related in some
way, but, again, it is not necessary.

216

Approtlfiatt Jq-jl««lrtili

f l*urr II ikyl»Ul tnntrolWap Structure with MOS IMI »Or Control SU»qurn

Output Ihl • f (lh(rtit lift}

local data »(input lift)

Mqiin* I? data and Control »low on top Two l»v*H of_ Control Kaji

217

IT"— ••BrtB*».>Jtniftwr,'i WBWHW IWMWIWII

-•-»v*%

and the output of C must be the same as that of f. - namely, local-data«';

we must also introduce a new local variable, say, "local-data"" for the com-

munication of B and C, i.e., output of B and input of C. Function fc, simi-

larly, is the composition of 0 and f7, so similar considerations apply. Func-

tion D inputs local-data,, function f7 outputs local-data,
1, and a new vari-

able, say, "local-data"'", must be introduced for the output of 0 and the

input of f,. Finally (for this subtree), f, is the coproduct of E and F, so

we have to partition t.ie input and output sets of f7, rather than the input

and output lists, as was the case with fg. Since f7 inputs local-data'" and

outputs local-data,', we denote the inputs of E and F, respectively, by

"hoca 1 -data'"" and H1
 local-data" "' to indicate that the union of the two

input sets must be the set of local-data'", and we denote the outputs of E
2 1

and F, respectively, by " local-data,'" and "local-data,'" to indicate that

the union of the two output sets must be the set of local-data,'. This gives

us the data and control flow indicated in the partial control map exhibited in

Figure 13. Note that we have reintroduced the condition (Figure 1) that deter-

mines the set partition involved in the decomposition of f?» expressing it as

a boolean-valued function of the relevant input data.

The only part of the tree remaining to be completed now is the two lower-left

levels, as indicated in Figure 13. Since f3 is the coproduct of Q, ffi, and 6,

and since it inputs local-data' and outputs output-list, we know that the input

sets of Q, fß, and G must form an exhaustive and mutually exclusive partition

of the input set of f3, and that their output sets must form an exhaustive,

possihly non-mutually exclusive (Cushing, 1978) partition of its output set.

In accordance with these facts, we choose to denote the inputs of Q, fA, and G,
1 2 3

respectively, by the symbols " local-data'", " local-data'", and " local-data'",
1 2

and their outputs, respectively, by " output list", " output list", and
3

" output list". Since ffi is the product of J and H, we know that the input and

output lists of f6 must be partitioned to get the input and output lists of J

and H. Accordingly, we denote the inputs of J and H, respectively, by
7 7
"local-data,"' and "local-data«'", and their outputs, respectively, by

7 7
"output-list," and "output-list«" (See Hamilton and Zeldin, 1976a and

Cushing, 1978a for a review of the superscript!ng and subscripting conventions

we have just finished using.) . The resulting completely specified control

map is exhibited in Figure 14. Note that, again, we have reintroduced the

218

O
u
t
p
u
t

li
st

-
f.
(
i
n
p
u
t

li

st
!

U
3

ou
tp

ut

li
s
t

«
fj
H

o
c
a

l
d

a
ta

')

lo
ca

l
d
a
ta

'
 •

f 2

<
lo

ca
l

da
ta

)

lo
ca

l
da

ta
*

•
f 5

(l
o

c
a

l
d
a
U

j)

JO
IN

lo
ca

l
da

ta
j

«
f 7

(l
o
c
a
l

d
a

ta
*"

*)

lo
ca

l
da

ta

•
A

(i
n

p
u

t
li
s
t)

lo
ca

l
d

at
a'
-
f

4
(l
o
c
a
l

da
ta

?
5

lo
ca

l
d

a
ta

"*
 .

0
(l
o

ca
l

d
a
U

j)

lo
ca

l
da

ta
^

-
C

(l
o
ca

l
da

ta
**

)
lo

ca
l

d
a

ta
"

•
K

lo
c
V

da
t«

2
»

w

•l
o

ca
l

d
a
ta

'
«

Ff
1
lo

ca
l

d
a
ta

*'
*)

2
lo

ca
l

da
ta

j"
•

f{
?
lo

ca
l

d
a

ta
'')

Fi
gu

re

13
:

Da
ta

an
d

Co
nt
ro
l

Fl
ow
 o

n
Al
l

Bu
t

Tw
o

Lo
we

r-
Le

ft

Le
ve
ls

of
 C

on
tr
ol

Ma

p

condition indicated in Figure 1 as determining the set partition, expressing

it, again, as a boolean-valu d function of the relevant input data.

Now that the data flow has been completely specified in the control map, we

observe that the control structure names are superfluous. Communication be-

tween subfunctions automatically means a JOIN (i.e., composition) control

structure, partitioning of the input and output sets automatically means an

OR (i.e., coproduct) control structure, and partitioning the input and out-

put lists automatically means an INCLUDE (i.e., product) control structure.

If we remove the control structure names from the tree structure in Figure 14,

then we get the control map exhibited in Figure 15, which, it follows, contains

exactly the same information.

f Each of Figures 14 and 15 contains all of the information contained in Figure 2,

as we have shown, and also a lot more. Figures 14 and 15 contain explicit

information on data flow, decomposition levels, and modularization which is

present only implicitly in Figure 2. In particular, only the primitive func-

t | tions A, B, C, D, E, F, G, H, J, and Q are explicitly represented in the

R-Net structure, whereas all of the higher-level functions, crucial to a com-

plete modular (correct interfaces) account of the system's functional struc-

ture, are included, along with the primitive functions, in the control maps.

220

O
ut

pu
t

li
s
t

 *

f.
(i
n

p
u

t
 li

s
t)

ou
tp

ut
 l

is
t

»
f 3

(l
o

ca
l

d
at

a'
)

OR

»
 lou

tp
ut

li
s
t

•
Q{

lo

ca
l

d
at

a'
)

ou
tp

ut

li
s
t

*
M

lo

ca
l
 d

at
a'

)
3ou

tp
ut

li
s
t

«G
(3

lo
ca

!
d

a
ta

*

lo
ca

l
da

ta

-
A

(in
pu

t
li
s
t)

lo
ca

l
d

at
*2
 •

f 4

(l
o

ca
l

da
ta

2
)

JO
IN

lo
ca

l
da

ta
2
 •
 C

(lo
ca

l
d

a
ta

")

lo
ca

l
u

u
~
 .
 B

n
o

c
#
,

u
u
j

io
ca

l
d

aU
|'

 «
f^

O
o

ca
!

da
ta

^)

ou
tp

ut
 l

is
tj
 =
 o

r
lo

ca
l

d
at

ap

'o
u

tp
u

t
li

$
t 2
 •
 H

P
lo

ca
l

d
at

ap

lo
ca

l
d

*t
*j
 »

«y
io

ca
l

d
a

ta
"*

)
lo

ca
l

d
a

u
"
*

•
0{

1o
ca

l
d

at
a.

)

R
ea

dy
(lo

ca
l

d
a
ta

""
)

»
Tr

ue

ke
ad

y(
 lo

ca
l

d
a

ta
'"

)
 -

F
a
ls

e
]

'lo
ca

l
da

ta
.*

*
r^

lo
c

a
l

d
a
ta

"
)

'lo
c
a
l

da
ta

.'
«

I(
'lo

c
a

l
d

a
U

'"
)

F
ig

u
re

14
:

 C

om
pl

et
e

C
o

n
tr

o
l
 M

ap

w

it
h

A
H

D
at

a
an

d
C

o
n
tr

o
l

 F
lo

w

E

x
p

li
c
it
ly

In
d

ic
a

te
d

O
ut

pu
t

11
st
 •

f,

(i
n

p
u

t
I i

s

ou
tp

ut
 U

s
t

*
f,

(l
o

c
a
l

d
at

a'
}

lo
ca

l
da

ta
*

*
fj

,(
lo

ca
l

d
at

a)

lou
tp

ut

li
s
t

*
Q

(l
lo

ca
l
 d

at
a*

)
2ou

tp
ut
 l

is
t

»
f,

(2
lo

ca
l

d
a
u

')

3
ou

tp
ut
 l

is
t

•
G

(3
'o

c«
l

d
at

a"
)

P
O

ro

ou

tp
ut
 l

ii
t,
 •
 J

(M
oc

«1
 d

at
a'

)

lo
ca

l
da

ta
 •
 A

fln
pu

t
li

s
t}

lo
ca

l
d

at
aj
 •

* 4
(1

ec
al

da
ta

2
)

lo
ca

J
d

au
*,
 •
 C

(l
o

ca
l

d
a

ta
")

lo
ca

l
d

a
ta

"
•

B
Jl

oe
al

c
a
U

j)

lo
ca

l
d

aU
{

»

f 4
(l

o
c
a
l

d
at

a,
)

2
ou

tp
vt
 l

l$
t 2
 •
 H

(2
lo

ca
l

d
a
u

')

lo
ca

l
d

a
u

*
»

f 7
(l

o
c
a
l

d
a
u

*'
*)

lo
ca

l
d

at
a*

**
 •

0(
1o

ca
1

d
a

u
.)

I
te

ad
y(

lo
ca

l
d

a
ta

*"
)

•
Tr

ue

R
ea

dy
(lo

ca
l

d
a
ta

*"
)

•
Fa

ls
e

'lo
ca

l
d

au
.'

•
ri

1
 lo

ca
l

d
a
ta

'"
)

'lo
c
a
l

d
au

,'
*

(.
{l

o
c
a
l

d
a
ta

'"
]

Fi
gu
re

15

:
Co

mp
le

te

Co
nt
ro
l

Ma
p
wi
th

Co

nt
ro

l
Fl

ow
 G

iv
en

by

th

e
Sp
ec
if
ic
at
io
n

of

Da

ta

Fl
ow

4. TRANSLATION BETWEEN R-NETS AND CONTROL MAPS

In Section 3 we investigated the relationship between R-Nets and control maps

by translating an idealized skeletal R-Net structure into a functionally equiv-
5

alent control map. Since the skeletal R-Net structure we examined contains

all of the essential features (other than For Each nodes) of an actual R-Net,

at least as long as an R-Net is viewed as a specification of control relations

among functions, we can legitimately conclude that we have proven the following

theorem:

Theorem 3: For any R-Net that does not contain For Each nodes, there
is a functionally equivalent control map that contains
only primitive control structures.

Since our proof vm strictly mechanical, requiring no special insight once the

steps are learned, and since the R-Net structure we used has no special prop-

erties, but is fully representative of such R-Net structures in general, we

can also conclude that we have proven the following theorem, as well:

Theorem 4: The translation procedure from R-Nets to control maps is
effective.

In other words, the translation process from R-Net structures to control maps

is completely general, applying to all such structures in the same way without

exception.

The converse of each of these theorems, furthermore, is also easily seen to be

true, since the mechanical translation process from R-Nets to control maps is

readily reversed. This gives us two additional theorems, as follows:

Theorem 5: For any control map that contains only primitive control
structures, there is a functionally equivalent R-Net that
contains no For Each nodes.

5
By saying that two functional control specifications are functionally equiva-

lent, we mean that they perform the same function and contain the same functions
and that the latter stand in the same control relationships in both cases. See
Gushing 1977, 1978b, where the same notion is used in the proof of a different
theorem.

"3 ""•" u\v inmmmimmmma*m\mB***M' ~°°^ • I iimiiiiwiir- I I

Theorem 6: The translation procedure from control maps to R-Nets is
effective.

As we have observed, however, a complete control map contains a lot of addi-

tional information regarding data flow and partitioning that is not explicitly

represented in the corresponding R-Net. This information is lost in the trans-

lation process from control maps to R-Nets.

Information explicitly represented in the control nap concerning higher-level

functional structure, while not actually lost in the translation from con-

trol maps to R-Nets, is encoded in the R-Nets in a very non-perspicuous form.

The boxes we drew in Section 2 to indicate this additional structure, in other

words, are not generally included in an actual R-Net and, in any event, do

not seem to be a particularly enlightening or convenient way to represent this

higher-level structure (though they were obviously ve»"y useful in proving our

four theorems). Whether there is a natural, revealing, and convenient notation

for representing this structure within the R-Net framework remains to be seen,

but it is far from evident, on the face of it, what such a notation would be.

Combining our four new theorems with some older results about HOS enables us

to draw one further conclusion from this discussion. Hamilton and Zeldin

(1974, 1976c) show that in order to have correct interfaces, i.e., in order

even to qualify as e real system in the first place, a candidate system must

satisfy the six HOS axioms. They also show, furthermore, that in order to

satisfy the six axioms a system must be representable by a control map which

contains only primitive control structures, i.e., JOIN, OR, and INCLUDE. In

conjunction with Theorems 5 and 6, however, these facts give us the following

result:

Corollary: Any system that can be represented by an R-Net with For
Each nodes can be represented by an R-Net without For
Each nodes and there is an effective procedure for elim-
inating the For Each nodes in going from the former to the
latter.

Hamilton and Zeldin's results show that any genuine system at all can be repre-

sented by a control map that contains only primitive control structures, so we

224

know that any system that can be represented by an R-Net with For Each nodes
can be represented by a control map that contains only primitive control struc-
tures. Theorems 5 and 6, however, tell us that a control map that contains only
primitive control structures can be effectively rewritten as an R-Net without
For Each nodes, so we know that the original R-Net with For Each nodes can be
effectively rewritten that way as well by first translating into a control map
with only primitive control structures.

One gap in this proof of the corollary, of course, is our assumption that For
Each nodes are a legitimate construct, in the first place. We have not shown,
that is, that For Each nodes are even capable of appearing in a system at all
without fouling up the interface relationships in the system. The best way
to prove this assumption, and thus to fill the gap in the proof of the corol-
lary, would be to specify the notion of For Each node explicitly as an HOS
abstract control structure,but there is a \/ery good reason for not trying to
construct the relevant control map here. If the assumption is false and such
a control map cannot be constructed, then not only is the corollary false, but
the whole issue simply dissolves, since R-Nets with For Each nodes would then
not describe any real systems. One has no business using For Each nodes in
the first place, in other words, if one cannot show that they interact properly
with the other three R-Net control structures. We are willing here to accept
the legitimacy of For Each nodes for the sake of argument and in order for the
corollary to have some substance, but the burden of proof rests with those who
want to use R-Nets with For Each nodes as a tool for specifying systems. What
the corollary tells us is Ui«L, if For Each nodes are legitimate at all, then
they are superfluous, except perhaps as a convenient abbreviatory device. If
they are not legitimate, then we cannot use them, and if they are legitimate,
then we need not use them,so there seems little point in trying to resolve the
question here.

If, for some reason, one does decide to use R-Nets to specify systems, then
our theorems and corollary provide a useful means of checking the R-Nets we
construct. Suppose we have an R-Net and we want to know whether the inter-
faces among the various modules represented and, in particular, among the
processing steps are all correct. All we have to do, then, to check this is
to translate the R-Net into a control map, as illustrated in Sections 2 and 3,

„?y„,., 22

and then see whether all the control structures are either primitive or defini-

able in terms of the primitives. This tells us that the HOS axioms are satis-

fied by the control map and thus that the interfaces in the control map, and

therefore also in the R-Net itself, are, in fact, correct.

• i

226

5- ON EVALUATING NOTATIONAL FRAMEWORKS

Having investigated in some detail the relationship between R-Nets and control

maps, we turn now to an examination of the relationship between each of these

notational frameworks and that of commutative diagrams. As is the case in

any domain, the value of a notational framework in system specification and

requirements definition depends on the use we want to put it to. As long as

our systems are relatively small and our requirements are simple, a notational

framework like that of R-Nets may be just what we need, since description in

terms of primitive control structures on one level of decomposition may suffice

for our purposes in those cases. As soon as our systems become very large,

however, the restriction leads to extremely cumbersome, unnecessarily complex

specifications and, indeed, may even obstruct the development process.

Control map notation provides a way out of this situation by supporting in a

natural way both the representation of levels of decomposition and the defi-

nition of abstract control structures. Control maps have, in fact, been

found in practice to be very useful tools both in designing new systems (e.g.,

Marel, 1977) and in gaining insight into how systems already designed are

supposed to work (e.g., HOS,1977). As we saw in Cushing (1978a), this nota-

tional framework is not perfect either, however, since it was only by representing

the three primitive control structures by commutative diagrams that we were

able to discover the category-theoretic duality of two of them, as expressed

in Theorem 2.

The point, again, is that the value of a notational framework depends on its

intended use. A theoretician interested in deep mathematical generalizations

will use whatever notational system will enable him to discover those general-

izations, sometimes control maps, sometimes commutative diagrams, and some-

times something else. An engineer looking for a practical tool for designing

large real-world systems that work, however, would be well-advised to stick

fairly exclusively with control maps, a notational framework that emerged

directly out of an analysis of the properties of large real-world systems.

Vie have already begun to appreciate the validity of this advice, as illustrated

by the advantages we have found of control maps over R-Nets, and we will

appreciate it even more when we examine the relationship between control maps

and commutative diagrams.

• .--..*. •.,..., .—.l.ilW,,.,» . •
227

i ii iflthrf m

(

6. Control Naps and Commutative Diagrams

Figure 16 shows the correspondences between the MOS primitive control structures

written as control maps and the commutative diagrams that they imply, as these

correspondences were used in the proofs (Cushing,1978a) of Theorems I and 2.

Descriptions of the three control structures written in the standard notation

of first-order predicate logic are also included to clarify the meanings of the

diagrams even further for those who are familiar with that notation, and a

clarification of the notational correspondences involved is also given.

The first question we have to ask now is how we might go about introducing a

way of representing higher-level functional structure in commutative diagrams

like those in Figure 16. In control maps, let us recall, higher-level func-

tional structure becomes representable as a result of the fact that repeated

decomposability is a natural consequence of the notation. Given any function,

such as the one in Figure 17(a), we can decompose it into subfunctions, using

one of the primitive control structures, to get a control map like the one in

Figure 17(b). Each of these (sub)functions can then be decomposed, if we

like, to get a control map like the one in Figure 17(c). Clearly, this de-

composition process can go on for as long as we choose, resulting in control

maps of systems with any number of levels of functional structure.

In all of the control maps in Figure 17, f is the overall system function,

but which other functions are primitive functions, like the A, B, C, D, E, F,

G, H, J, and Q of Figure 4, and which are higher-level functions, like the f,

through f7 of that figure, depends on how many levels of decomposition are

involved. In (a) of Figure 17, if we view the figure as a control map at all,

f itself is treated as a primitive function, whereas in (b) it is g and h that

are the primitive operations of the system. In (c), (d), and (e) g and h are

higher-level functions, along with f and k in (d) and both k and n in (e). The

primitive operations in these three control maps are i, j, k andl in (c),

i, j» m, n, and 1 in (d), and i, j, m, o, p, and 1 in (e).

Note also that higher-level functional structure can be represented abstractly

in a control map without necessarily haying to specify which primitive control

228

«W

I"' £y*ff*t<'"' iN-ayg» h
II

1/5 f«sN|i M A».

\ <*
f I"' *l

N. • » u 1 *\ i I 'I J-
i

t <N*, s\ >^V<

<'»') F'rH-prJcr loait
(KM») ('(«) • g(h(«M (V«») {«•(«,,I|»D »(«)•(*{«,). f(«j)» fruA) ((uA,» f(«) . |UM A («cAj3 f(«) • MX)))

• It « litt of vartabl«* >.. *. of an* typ* *». '• »rt »ar Haiti Of tt» um typ« a» i

Clarification:
y ft a 1 Itt of vartabUi y., y. of My typ» ly. *y art «arlaklo» of UM MM typt as y

A • «Win ff) • OOMIP (<Jj) • doasln (d?) A • «win (f) - ran» (1,) • rang« (1jJ
A, • dOMlfl (|j) . «Mt« (|) 1. •. y art vartaol«t of My typ« A, • rang« («,) • «Main (y|

A • «win (f) • «MMln (h)
«2 • rinjc (d2) • AMin (h) A, • dOMlA (l{) • tel„ (»]

• • rang« th) • doMln (a)
C • rang« (g) • ringt (fj

Cj • rang« (|) • rang« («,) C, • rwai (g) • OOMI» fj&)

', * rang« (h) • otaaln (j^)

C » rang« (J,) • rang« (Jt) * rang« (f)

C, • rang« (h) • rang« («2)

• (1
C " *»atn (a,) . tkmatn (»j) • rang« (f)

y c C
l\\ '«•*« * (A y t C
"1 * "I y c C

"l * *l A • Aj » Aj
'l * Ci c • c, * c2

l« « A. » ' »,U -j

'., C'C1UC*

1 . . _„ ,
Vc2

Figur« H: T» HQS frl»U>»> Con^rot Strycuirat t»pr«tt«d at fontrol Map«.
a» Ssaatttiia Biaaati ***,n Fi«tt-ord«r toou

229

&M*A «Ww «aanMHP

y
*

t'(
x
)

y
*

f(
x
)

/

o

x
=
 i

n
p

u
t

v
a

ri
a

b
le

y
=

o
u

tp
u

t
v
a
ri
a
b
le

f
=
 f

u
n
c
ti
o
n

b
e

in
g

de
co

m
po

se
d

g
,h

,i
,j
,k

.1
,m

,n
.o

,p
*s

u
b

fu
n

c
ti
o

n
s

o

f
f

a
t

th
e

va
ri
o
u
s

le
v
e

ls

o

f
d
e
co

m
p
o
si

tio
n

C
.
 =

JO
IN

,
 IN

C
LU

D
E

,
o
r

O
R

,
 t

h
e

th
re

e

p
ri
m

it
iv

e

c
o
n
tr

o
l

 s
tr

u
c
tu

re
s

!a
)

!b
)

(c
;

F
ig

u
re
 1

7:

R

ep
re

se
nt

a
ti
o
n
 o

f
H

ig
h
e
r-

L
e

ve
l
 F

u
n

ct
io

n
a

l
S

tr
u

ct
u

re

is

M
ad

e
P

os
s
ib

le

in

C
on

tr
o
l

*a
p

s

by

R
ep

ea
te

d
D

e
co

tn
p
o
sa

b
ili

ty
 a

n
d

Is

U
n

ifo
rm

 f
o
r

A1
 J_

 T
h

re
e

P

ri
m

it
iv

e

C

o
n

tr
o

l
S

tr
u

c
tu

re
s

structure is involved. Naturally a complete system description must include

a full statement of all of the control structures involved, so the value of

each "C " in Figure 17 would have to be filled in to obtain such a description,

along with the relevant variables. Our point here, however, is that the repre-

sentation of functional decomposition is uniform for all three primitive control

structures, since they all get represented by downward extension of subfunc-

tions (or "branching", in the tree-geonetric, but not the computer-programming

sense of that term).

The situation with commutative diagrams is very different in this respect, as

we have already begun to see. We have seen, in Figure 17, that, while the

arrow diagrams for INCLUDE and OR are reasonably similar in form (in fact,

category-theoretic duals), the arrow diagram for JOIN looks rather different.

Whereas each of (lib) and (iic) of that figure requires subsidiary arrows -

i.e.,7T., d. or i., j. - to make all of the mapping relationships explicit,

the diagram (iia) requires only the principal arrows f, g, and h denoting

the overall function and its subfunctions. This discrepancy obviously has

implications for the possibility of uniform decomposability, as the next two

figures clearly illustrate.

For simplicity, let us assume that all instances of "C," in Figure 17 denote

the same primitive control structure. Figure 18 shows what Figure 17 trans-

lates into in arrow-language terms when we take C. = JOIN, for all i of the C- in

Figure 17, and Figure 19 shows what happens when we take C^ =INCLUDE, for all

i of the C. in Figure 17. The commutative diagrams that result when we

take C. =0R, for all i of the C. in Figure 17, are identical to those in

Figure 19, except that all of the arrows are reversed, a simple consequence

of Theorem 2, and different labels might be chosen, as well.

After even a casual look at Figures 17, 18, and 19, it seems safe to say,

without fear of exaggeration, that, while the control maps in Figure 17 are

simple, neat, and elegant, the commutative diagrams that correspond to them

in the other two figures are a mess. The first problem we notice, as sug-

gested above, is the gross non-uniformity in the ways the commutative diagrams

manage to represent composition, on the one hand (Figure 18), and class

231

232

233

partition(as well as set partition, via Theorem 2), on the other (Figure 19)

What are simply two different manifestations of the single formal structure

in control map notation, with the difference indicated by straightforward

specification of the data relationships involved, as seen in Section 3, become

wildly unrelated kinds of formal structures when expressed as commutative

diagrams. The non-uniformity of the arrow representations of composition, on

the one hand, vs. the two forms of partition, on the other, is already evident

in Figure 16, of course. The arrow representation of a composition includes

only the mappings in the composition, for example, whareas the arrow repre-

sentations of a partition (of either sort) requires two pairs of auxiliary

mappings for each binary decomposition. The partition arrow diagrams,

furthermore, involve a certain decompositional symmetry of the subfunctions

around the parent function and geometric parallelism of the subfunctions,

neither of which is in evidence at all in the arrow diagram for composition.

The full extent of the comp^cations caused by these discrepancies does not

become clear, however, until we introduce more and more levels of functional

structure, as in Figure 17, 18 and 19. What look in Figure 16 like inter-

esting, but minor non-uniformities in the arrow representations of composition

and partition, become a notational nightmare when we try to extend those

representations beyond a single level of decomposition, as in the latter

three figures.

Perhaps most damaging to the value of commutative diagrams in system design,

however, is the apparently random way in which both the composition and

partition diagrams expand geometrically on the page, as more levels of decom-

position are introduced. As we have seen, repeated decomposition is repre-

/ sented quite simply and naturally for all primitive control structures in

control maps by downward expansion of the tree structure, with whatever left-

ward and right-ward expansion is naturally involved in that. For commutative

diagrams, however, the situation is not so simple, as Figures 18 and 19 clearly

reveal.

234

For composition, shown in Figure 18, the situation is complex, but perhaps

tolerable. Once we choose a direction in which to expand the initial decom-

position, further expansions are all more or less in that same general direc-

tion, at least as far as the diagrams shown in that figure are concerned.

Introducing more levels of decomposition could complicate the picture consid-

erably, however, especially, for example, if we were to begin decomposing j

and m. In that case we might find our diagram closing in on itself around f,

unless we either expressed our further decompositions in triangles too small

to read or significantly increased the size of the entire diagram.

For partitions, however, the situation is qualitatively more complex, it

seems, than could ever be the case in composition. As Figure 19 reveals,

repeated partition decompositions are expressed In commutative diagrams not

only by outward expansion but by inward expansion, as well! Every new level

of decomposition we introduce requires us to introduce a new symmetric struc-

ture like Figure 16(iib) {or c) around the arrow that represents the function

we are decomposing. In decomposing h, for example, in Figure 19(b), we have

to introduce 1 outside the diagram in Figure 19(c), automatically causing

expansion in one direction, and k inside the diagram, creating pressure for

expansion by the need to make room for it. In decomposing n, in contrast,

in Figure 19(d), we have to introduce both o and p inside the diagram in

Figure 19(e), whereas in decomposing f in Figure 19(a), we have to introduce

both g and h outside the diagram in Figs re 19(b). All uniformity apparently

goes out the window in this case, and the diagrams have to expand arbitrarily

in all directions in order just to remain intelligible as more and more

decomposition takes place.

It seems fair to say that diagrams of this sort would not be a very helpful

tool to the engineer in actually specifying a real system or describing a set

of requirements, once the system or requirements had surpassed the most minimal

level of complexity, ^e have not even touched on the problem, we might add,

of v/hat happens to the commutative diagrams, when the systems they represent

are permitted to contain instances of more than just one of the primitive

control structures. As might be expected, the complexity of the diagrams

that result in that case is truly astounding, as compared to the simple and

23b

straightforward control maps that they are functionally equivalent to, and

vie leave it as an enlightening exercise for the reader to investigate that

fact for himself.

None of this is meant to disparage comnutative diagrams, however, which

have been found to be extremely useful throughout contemporary mathematics

in unifying a wide range of otherwise apparently disparate phenomena

(MacLane and Birkhoff, 1967; MacLane, 1972; Arbib and Manes, 1975). We

ourselves used such diagrams to prove Theorem 2 {Cashing, 1978a), whose truth

is not evident from control-map notation. The fact remains, however, that.,

however useful these diagrams may be for other purposes in other areas,

they are not wery useful in designing or describing either systems or

requirements, nor are they particularly revealing of system structure or

architecture, as is amply verified in Figures 17, 18 and 19.

236

7. COMMUTATIVE DIAGRAMS ANO R-NETS

Our reason for stressing this latter point is that commutative diagrams are,

in fact, more revealing of system structure than are R-Nets, and therefore more

useful in design as well, beyond the minimal level of complexity. As we saw in

Section 2, R-Nets provide no natural Mechanism for representing higher-level

functional structure, whicn we had to indicate in Figure 4 by introducing

the new notational device of drawing boxes around network subconfigurations

that could be seen to be performing higher-level functions. Drawing these

boxes was useful in establishing the relation between R-Nets and control

maps, and thus in proving theorems 3, 4, 5, and 6, but they are not an

intrinsic part of the R-Net notation itself, which does not concern itself

with higher-level functional structure. One might try to augment the R-Net struc-

ture by adopting the box device as a part of an expanded notational framework,

but, although this would increase the power of the framework to the level

of being able to describe higher-level functional structure, the diagrams

that would result from repeated decomposition would be every bit as complex

as the corresponding arrow diagrams, such as those in Figures 18 and 19.

This fact seems fairly clear just from looking at Figure 4 itself, and we

leave any further verification of it, again, to the reader.

There is a certain similarity, in fact, between R-Net notation with boxes

and commutative diagrams, and it is worth discussing that similarity briefly

at this point. Speaking metaphorically, we might even say that R-Nets-with-

boxes and commutative diagrams are "duals," in a very loose sense like the

sense of "dual" used in projective geometry (Behnke et al.,1974), rather

than the category-theoretic sense used in the formulation of Theorem 2.

The interchanging of points and lines plays a role in projective geometry

analogous to the reversing of the directions of arrows in category theory.

Given any theorem in projective geometry formulated entirely in terms of points,

lines, and incidence, we obtain another theorem by interchanging the words

"point" and "line," and no further proof of a theorem obtained in this way is

needed (pp. J5-96).

If, aoain, we let ourselves speak very loosely, rather than with the precision

that led to Theorem 2, then we can see that there is a sense in which this

237

latter notion of duality characterizes the relation between R-Nets and arrow

diagrams. R-Nets, as our Figures 1 and 2 show, use nodes (points) to represent

functions and arrows (lines), in effect, to represent flowing control, whereas

commutative diagrams use nodes (points) to represent data repositories, i.e.,

sets, and arrows (lines) to represent functions. An R-Net, in other words,

will use the configuration

(i) G3—->

to indicate that control is flowing into and then out of function f , whereas

a commutative diagram will use the configuration

(2) A >B

to indicate that data flows from repository A through function f into repository

B. In the R-Net the function is represented by a node and the flowing control

by arrows; in the commutative diagram the function is represented by an arrow

and it is the data repositories, and thus, in effect, control that get repre-

sented by nodes.

There is good reason to think that this "duality" between R-Nets and commutative

diagrams can be made quite precise and that a lot of interesting theoretical

results could then be derived from it. At present, however, we are treating

it as only a suggestive metaphor-, as we have repeatedly stressed. The really

important fact to observe now, in our present context, is that in both cases,

the notion of control structures, except for composition, is really something

quite foreign to the notation and has to be introduced, so to speak, from the

outside. Composition, of course, is a triviality, since all it involves is

repeated application of functions, and so can be represented simply by linking

together a string of units of the formr (1) or (2). The other two control

structures, however, require special configurations in both R-Nets and commuta-

tive diagrams, as we have seen.

If f is a function, we can also view the arrov/s as denoting data flow into and
out of the functi.n. Data flow in any other sense is not represented, however,

The "duality" of data and control is discussed more fully in Cushing (1977, 1978b)
See also Cushing (1978a) and Section 3 above.

238

In commutative diagrams, a partition is indicated by having subfunctions run

parallel to the parent function; which partition is involved is indicated by

the directions of the am ws relative to the domains and ranges of the parent

function. In an R-Net, in contrast, ä partition is indicated by having the

subfunctions "branch off" so that they have no direct geometric connection

to each other, and the parent function is not shown at all; which partition is

involved, furthermore, can be indicated only by introducing special ad hoc

symbols ("&" and "+") to do so, since nothing otherwise already in the notation

lends itself readily to that purpose, as arrow directions do in commutative

diagrams. In neither case is the notion of control structure really an in-

trinsic part of the notation. In commutative diagrams, however, we can at

least decipher what the control structures are by carefully examining the

arrow directions in the various structural configurations, quite aside from

what symbols happen to be added as labels to the diagrams. In R-Nets, in

contrast, it is only the symbols that tell us which sort of partition is

involved.

This difference is closely related to the loose "duality" between R-Nets and

commutative diagrams that we have discussed. The reason that it is possible

to show parent functions in a commutative diagram is precisely because func-

tions are represented by arrows, not nodes. Given two arrows representing

functions, it is a simple matter to represent their parent function as an arrow

parallel and between them, as indicated in Figure 19, and higher-level functional

structure then follows by repeating this process. Since functions are re-

presented in R-Nets by nodes, however, this device is no longer available:

what would it mean to make one node "parallel" to two others? The only solution

it seems, is exactly the one we introduced in our translation from R-Nets to

control maps, namely, drawing boxes around the nodes representing the sub-

functions to get the "node" representing the parent function. One "node" of

this sort containing two other nodes that represent functions is like one

arrow parallel to and between two other arrows that denote functions. Our box

notation is thus a natural analog for R-Nets of arrow parallelism in commutative

diagrams, as well as being what seems to be the only way to get

higher-level functional structure into R-Nets.

239

The careful reader will by now have observed that functions are also represented

by nodes in control maps and will wonder why (or whether) the same deficiencies

of R-Nets that we have pointed out result from this representation do not

also apply to control maps. The reason why they do not is easily seen by

comparing Figures 8, 9, ano 10. The function nodes in a control-map tree play

a wery different role from that played by the function nodes in an R-Net, be-

cause the lines that connect the nodes are of a very different character in

the two kinds of diagrams. The lines in an R-Net connect functions on one level
t0 each other, possibly by way of a control structure node, whereas the lines

in a control map connect functions on one level to their parent function on

the next higher level. Whereas lines in an R-Net denote actual

control flow through a system, the lines in a control map denote relations

of control rn a_ hierarchy of levels of control. Control map notation is based

on the notion of control structure, rather than either having to introduce

it artificially through special symbols or having to decipher it from the

directions of arrows. As Figures 8, 9, and 10 make clear, the lines in a

control map serve, in a sense, as abbreviations for the boxes in a rearranged

R-Net structure with boxes. Once we start to represent things as control-

map trees, however, the boxes become utterly superfluous and we are free to

make full use of the control-map notation itself.

240

8• CONTROL MAPS,JMOS_,__AND. COMMUTATIVE DIAGRAMS

Our discussion to this point is summarized in Figure 20. Relative to the
ranges of information they are each capable of expressing, R-Nets and control
maps appear to be equally perspicuous. Both notations are straightforward to
use and easy to read, providing a clear understanding of the aspects of system
structure that they describe. Control maps are considerably more expressive,
however, in that they naturally incorporate a way of describing higher-level
functional structure, whereas R-Nets do not. The two frameworks would thus
appear to be equally useful in describing small systems and simple requirements
in which problems of interface correctness and the need for abstract control
structures do not arise, but the use of control maps would appear to be advis-
able in describing larger systems and more complex requirements, in which these
issues become increasingly more important.

Control maps, R-Nets-with-boxes, and commutative diagrams appear to be equal
in expressive power, but differ markedly in perspicuity. All three notations
are capable of expressing information about higher-level functional structure, but
only control maps provide a uniform way of representing that information.
Control maps, furthermore, expand in size, as complexity of decomposition
increases, by a simple downward tree expansion, with no alteration to the
structure of the diagram already drawn. Both R-Nets-with-boxes and commutative
diagrams, however, represent increasing functional decomposition by increasing

*J

the internal complexity of the diagram, by drawing more boxes in the former case
and more arrow configurations in the latter. This internal complication, in contrast
to the external downward expansion of control maps, could necessitate repeated
redrawincjs of the diagrams, as the need for larger dimensions to make room for
the increasing complexity becomes evident . Again, the three notational frame-
works would appear to be equally suitable for describing very small systems
and very simple requirements, but control maps would appear to be advisable in
all other cases.

o
Composition in commutative diagrams (and in R-Nets, for that matter) does
expand outward (Fig. 18), but this only underscores the non-uniform character %
of the way those diagrams represent control structures. .k «

241

©

©
©

'xpressive Power

R-Nets

R-Nets-with-Boxes

Control Haps

Commutative Diagrams

Floure 20: Relative Expressive Power and Perspicuity of.the

Notational Frameworks

242

BIBLIOGRAPHY

* Alford, M. W. et al., "Software Requirements Engineering Methodology", SREP
Final Report - Volume 1, CDRL C005, TRW Defense and Space Systems
Group, Huntsville, AL (August 1, 1977).

Arbib, Michael A. and Ernest G. Manes, Arrows, Structures, and Functors.
Academic Press, New York (1975)7"

i
Behnke, H. et al. (ed.), Fundamental of Mathematics, Volume II, Geometry,

MIT Press, Cambridge (T974)Y~

Cushing, S., "The Software Security Problem and How to Solve It", Technical
Report No. 6, Higher Order Software, Inc. (hereafter cited as HOS, Inc.)

t Cambridge, MA (July 1977).

Cushing, S., "A Note on Arrows and Control Structures: Category Theory and
HOS," in "Candidate BMO Data and Axioms," Technical Report No. 15,
HOS, Inc., Cambridge, MA (June 1978a).

* Cushing, S. "Security Aspects of Hiqher Order Software," To appear in the Pro-
ceedings of the COMPSAC '78 Conference, Chicago, Nov. 1978 (IEEE Computer Soc.)

Harel, D. and R. Pankiewicz, "A Universal Flowcharter," Technical Report No. 11,
HOS, Inc., Cambridge, MA (November 1977).

* Hamilton, M. and S. Zeldin, "AXES Syntax Description," Technical Report No. 4,
HOS, Inc., Cambridge, MA (December 1976a).

Hamilton, M. and S. Zeldin, "Integrated Software Development System/Higher Order
Software Conceptual Description," Technical Report No. 3, HOS, Inc.,

j- Cambridge, MA (November 1976b).
I
* Hamilton, M. and S. Zeldin, "Higher Order Software--A Methodology for Defining

Software," IEEE Transactions in Software Engineering, Vol. SE-2, No. 1,
(March 1976c).

Hamilton, M. and S. Zeldin, "The Manager as an Abstract Systems Engineer,"
% Digest of Papers, Fall COMPCON 77 (Washington, D.C.), IEEE Computer

Society, Cat. No. 77CH1258-3C (Sept. 1977). ["Technical Report No. 5,
HOS, Inc., Cambridge, MA (June 1977a)].

Hamilton, M. and S.!Zeldin, " Verification of an Axiomatic Requirements
Specification," A Collection of Technical Papers, AIAA/NASA/IEEE/
ACM Computers in Aerospace ConferenceTXLos Angeles, CA) (October 1977).
[Technical Report No. 10, HOS, Inc., Cambridge, MA (October 1977b)].

Hio'ier Order Software, Inc., "The Application of HOS to PLRS," HOS, Inc., TR-14,
Cambridge, MA (November 1977c).

* MacLane, S., Categorizes for the Working Mathematician, Springer-Verlag (1972).

MacLane, S. and G. Birkhoff, Algebra, Macmillan, New York (1967).

243

